IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v275y2019i3p1108-1125.html
   My bibliography  Save this article

Simulation-based optimization approach for material dispatching in continuous mining systems

Author

Listed:
  • Shishvan, Masoud Soleymani
  • Benndorf, Jörg

Abstract

This paper examines a problem related to dispatching materials to spreaders in coal (lignite) mines operated under the paradigm of continuously excavated material flow. In the considered particular case, complexity arises from different material types of overburden to be placed on the dump site in pre-defined patterns that guarantee geotechnical safety. These types include wet, semi-wet and dry material, which are accessed on the excavation site according to the geological deposition and the mining plan. Controlling of the dispatch system has to take into account the extraction sequence and geological stratification on the excavation site and the available dump space per material on the dumping site. With eight excavators on the excavation site and seven spreaders on the dump site the problem is already complex, having not stated yet that random breakdowns may make some options temporarily unavailable. To optimize the dispatch system in terms of minimum idle time due to unavailability of dumping space, a new multi-stage simulation-based optimization approach is proposed. This approach consists of running alternatingly a deterministic optimization model and a stochastic simulation model. It combines simulation and algorithms to solve a transportation problem and a job-shop scheduling problem. The proposed approach is tested on a large continuous mine under given different dumping sequences, and results are reported. The merits and limitations of the proposed approach as pinpointed and farsighted operations management are discussed.

Suggested Citation

  • Shishvan, Masoud Soleymani & Benndorf, Jörg, 2019. "Simulation-based optimization approach for material dispatching in continuous mining systems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1108-1125.
  • Handle: RePEc:eee:ejores:v:275:y:2019:i:3:p:1108-1125
    DOI: 10.1016/j.ejor.2018.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718310671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    2. Christian Almeder & Margaretha Preusser & Richard F. Hartl, 2009. "Simulation and optimization of supply chains: alternative or complementary approaches?," Springer Books, in: Herbert Meyr & Hans-Otto Günther (ed.), Supply Chain Planning, pages 29-53, Springer.
    3. Sprenger, Ralf & Mönch, Lars, 2012. "A methodology to solve large-scale cooperative transportation planning problems," European Journal of Operational Research, Elsevier, vol. 223(3), pages 626-636.
    4. Aqlan, Faisal & Lam, Sarah S. & Ramakrishnan, Sreekanth, 2014. "An integrated simulation–optimization study for consolidating production lines in a configure-to-order production environment," International Journal of Production Economics, Elsevier, vol. 148(C), pages 51-61.
    5. Hamed Jalali & Inneke Van Nieuwenhuyse, 2015. "Simulation optimization in inventory replenishment: a classification," IISE Transactions, Taylor & Francis Journals, vol. 47(11), pages 1217-1235, November.
    6. Gansterer, Margaretha & Almeder, Christian & Hartl, Richard F., 2014. "Simulation-based optimization methods for setting production planning parameters," International Journal of Production Economics, Elsevier, vol. 151(C), pages 206-213.
    7. Matamoros, Martha E. Villalba & Dimitrakopoulos, Roussos, 2016. "Stochastic short-term mine production schedule accounting for fleet allocation, operational considerations and blending restrictions," European Journal of Operational Research, Elsevier, vol. 255(3), pages 911-921.
    8. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song Jiu, 2021. "A two-phase approach for integrating preventive maintenance with production and delivery in an unreliable coal mine," Journal of Heuristics, Springer, vol. 27(6), pages 991-1020, December.
    2. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    3. Hazrathosseini, Arman & Moradi Afrapoli, Ali, 2023. "The advent of digital twins in surface mining: Its time has finally arrived," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    2. Romauch, Martin & Hartl, Richard F., 2017. "Capacity planning for cluster tools in the semiconductor industry," International Journal of Production Economics, Elsevier, vol. 194(C), pages 167-180.
    3. Juan, Angel A. & Faulin, Javier & Grasman, Scott E. & Rabe, Markus & Figueira, Gonçalo, 2015. "A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems," Operations Research Perspectives, Elsevier, vol. 2(C), pages 62-72.
    4. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    5. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    6. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    7. Giscard Valonne Mouafo Nebot & Haiyan Wang, 2022. "Port Terminal Performance Evaluation and Modeling," Logistics, MDPI, vol. 6(1), pages 1-22, January.
    8. Huang, Shiyang & Hu, Guiping & Chennault, Carrie & Su, Liu & Brandes, Elke & Heaton, Emily & Schulte, Lisa & Wang, Lizhi & Tyndall, John, 2016. "Agent-based modeling of bioenergy crop adoption and farmer decision-making," Energy, Elsevier, vol. 115(P1), pages 1188-1201.
    9. Warren B. Powell, 2010. "Rejoinder ---The Languages of Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 23-25, February.
    10. Bo Dai & Fenfen Li, 2021. "Joint Inventory Replenishment Planning of an E-Commerce Distribution System with Distribution Centers at Producers’ Locations," Logistics, MDPI, vol. 5(3), pages 1-14, July.
    11. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    12. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    13. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    14. Lam, Chiou-Peng & Masek, Martin & Kelly, Luke & Papasimeon, Michael & Benke, Lyndon, 2019. "A simheuristic approach for evolving agent behaviour in the exploration for novel combat tactics," Operations Research Perspectives, Elsevier, vol. 6(C).
    15. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    16. Nuraiman, Dian & Ozlen, Melih & Hearne, John, 2020. "A spatial decomposition based math-heuristic approach to the asset protection problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    17. Warren B. Powell, 2009. "What you should know about approximate dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 239-249, April.
    18. Margaretha Gansterer & Richard F. Hartl, 2021. "The Prisoners’ Dilemma in collaborative carriers’ request selection," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 73-87, March.
    19. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    20. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:275:y:2019:i:3:p:1108-1125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.