IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v271y2018i1p40-56.html
   My bibliography  Save this article

A new effective unified model for solving the Pre-marshalling and Block Relocation Problems

Author

Listed:
  • de Melo da Silva, Marcos
  • Toulouse, Sophie
  • Wolfler Calvo, Roberto

Abstract

Container terminals are exchange hubs that interconnect many transportation modes and facilitate the flow of containers. Among other elements, terminals include a yard which serves as temporary storage space. In the yard, containers are piled up by cranes to form blocks of stacks. During the shipment process, containers are carried from the stacks to ships following a given sequence. Hence, if a high priority container is placed below low priority ones, such obstructing containers have to be moved (relocated) to other stacks. Given a set of stacks and a retrieval sequence, the aim in the Pre-marshalling Problem (pmp) is to sort the initial configuration according to the retrieval sequence using a minimum number of relocations, so that no new relocations are needed during the shipment. The objective in the Block Relocation Problem (brp) is to retrieve all the containers according to the retrieval sequence by using a minimum number of relocations. This paper presents a new unified integer programming model for solving the pmp, the brp, and the Restricted brp (r-brp) variant. The new formulations are compared with existing mathematical models for these problems, as well as with other exact methods that combines combinatorial lower bounds and the branch-and-bound (B&B) framework, by using a large set of instances available in the literature. The numerical experiments show that the proposed models are able to outperform the approaches based on mathematical programming. Nevertheless, the B&B algorithms achieve the best results both in terms of computation time and number of instances solved to optimality.

Suggested Citation

  • de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
  • Handle: RePEc:eee:ejores:v:271:y:2018:i:1:p:40-56
    DOI: 10.1016/j.ejor.2018.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718303795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petering, Matthew E.H. & Hussein, Mazen I., 2013. "A new mixed integer program and extended look-ahead heuristic algorithm for the block relocation problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 120-130.
    2. Iris F. A. Vis & Kees Jan Roodbergen, 2009. "Scheduling of Container Storage and Retrieval," Operations Research, INFORMS, vol. 57(2), pages 456-467, April.
    3. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "A new binary formulation of the restricted Container Relocation Problem based on a binary encoding of configurations," European Journal of Operational Research, Elsevier, vol. 267(2), pages 467-477.
    4. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    5. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    6. Caserta, Marco & Schwarze, Silvia & Voß, Stefan, 2012. "A mathematical formulation and complexity considerations for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 219(1), pages 96-104.
    7. Tanaka, Shunji & Tierney, Kevin, 2018. "Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 264(1), pages 165-180.
    8. Bortfeldt, Andreas & Forster, Florian, 2012. "A tree search procedure for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 217(3), pages 531-540.
    9. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    10. Hwan Kim, Kap & Bae Kim, Hong, 1999. "Segregating space allocation models for container inventories in port container terminals," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 415-423, March.
    11. Zehendner, Elisabeth & Caserta, Marco & Feillet, Dominique & Schwarze, Silvia & Voß, Stefan, 2015. "An improved mathematical formulation for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 415-422.
    12. Lee, Yusin & Chao, Shih-Liang, 2009. "A neighborhood search heuristic for pre-marshalling export containers," European Journal of Operational Research, Elsevier, vol. 196(2), pages 468-475, July.
    13. Kim, Kap Hwan & Park, Kang Tae, 2003. "A note on a dynamic space-allocation method for outbound containers," European Journal of Operational Research, Elsevier, vol. 148(1), pages 92-101, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    2. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén & Tierney, Kevin, 2020. "Minimizing crane times in pre-marshalling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    3. Maniezzo, Vittorio & Boschetti, Marco A. & Gutjahr, Walter J., 2021. "Stochastic premarshalling of block stacking warehouses," Omega, Elsevier, vol. 102(C).
    4. Jiménez-Piqueras, Celia & Ruiz, Rubén & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon, 2023. "A constraint programming approach for the premarshalling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 668-678.
    5. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    6. Tanaka, Shunji & Voß, Stefan, 2019. "An exact algorithm for the block relocation problem with a stowage plan," European Journal of Operational Research, Elsevier, vol. 279(3), pages 767-781.
    7. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "Integer programming models for the pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 142-154.
    8. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    9. Bacci, Tiziano & Mattia, Sara & Ventura, Paolo, 2020. "A branch-and-cut algorithm for the restricted Block Relocation Problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 452-459.
    10. Ignacio Araya & Martín Toledo, 2023. "A fill-and-reduce greedy algorithm for the container pre-marshalling problem," Operational Research, Springer, vol. 23(3), pages 1-29, September.
    11. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Parreño, Francisco, 2022. "A beam search algorithm for minimizing crane times in premarshalling problems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1063-1078.
    12. Tanaka, Shunji & Voß, Stefan, 2022. "An exact approach to the restricted block relocation problem based on a new integer programming formulation," European Journal of Operational Research, Elsevier, vol. 296(2), pages 485-503.
    13. Tanaka, Shunji & Tierney, Kevin & Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "A branch and bound approach for large pre-marshalling problems," European Journal of Operational Research, Elsevier, vol. 278(1), pages 211-225.
    14. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    2. Jin, Bo & Tanaka, Shunji, 2023. "An exact algorithm for the unrestricted container relocation problem with new lower bounds and dominance rules," European Journal of Operational Research, Elsevier, vol. 304(2), pages 494-514.
    3. Tanaka, Shunji & Voß, Stefan, 2019. "An exact algorithm for the block relocation problem with a stowage plan," European Journal of Operational Research, Elsevier, vol. 279(3), pages 767-781.
    4. Ruiyou Zhang & Shixin Liu & Herbert Kopfer, 2016. "Tree search procedures for the blocks relocation problem with batch moves," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 397-424, September.
    5. Silva, Marcos de Melo da & Erdoğan, Güneş & Battarra, Maria & Strusevich, Vitaly, 2018. "The Block Retrieval Problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 931-950.
    6. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    7. Ting, Ching-Jung & Wu, Kun-Chih, 2017. "Optimizing container relocation operations at container yards with beam search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 17-31.
    8. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "Yard Crane Scheduling for container storage, retrieval, and relocation," European Journal of Operational Research, Elsevier, vol. 271(1), pages 288-316.
    9. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Zweers, Bernard G. & Bhulai, Sandjai & van der Mei, Rob D., 2020. "Optimizing pre-processing and relocation moves in the Stochastic Container Relocation Problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 954-971.
    11. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    12. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    13. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    14. Andresson Silva Firmino & Ricardo Martins Abreu Silva & Valéria Cesário Times, 2019. "A reactive GRASP metaheuristic for the container retrieval problem to reduce crane’s working time," Journal of Heuristics, Springer, vol. 25(2), pages 141-173, April.
    15. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "A new binary formulation of the restricted Container Relocation Problem based on a binary encoding of configurations," European Journal of Operational Research, Elsevier, vol. 267(2), pages 467-477.
    16. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén, 2019. "Integer programming models for the pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 142-154.
    17. Huiling Zhu & Mingjun Ji & Wenwen Guo & Qingbin Wang & Yongzhi Yang, 2019. "Mathematical formulation and heuristic algorithm for the block relocation and loading problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 333-351, June.
    18. Zhang, Canrong & Guan, Hao & Yuan, Yifei & Chen, Weiwei & Wu, Tao, 2020. "Machine learning-driven algorithms for the container relocation problem," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 102-131.
    19. Azab, Ahmed & Morita, Hiroshi, 2022. "The block relocation problem with appointment scheduling," European Journal of Operational Research, Elsevier, vol. 297(2), pages 680-694.
    20. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:271:y:2018:i:1:p:40-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.