IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v262y2017i3p1094-1108.html
   My bibliography  Save this article

Identification of effective implementations of simulated annealing for optimizing thinning schedules for single forest stands

Author

Listed:
  • Moriguchi, Kai
  • Ueki, Tatsuhito
  • Saito, Masashi

Abstract

We explored the most effective implementation of simulated annealing (SA) to optimize thinning schedules for single even-aged stands, with respect to the reliability of optimality. To enable foresters to use this implementation in a variety of situations, four yield models were set as benchmarks. We defined 32 implementations, each a different combination of variable control methods, proposal densities, cooling functions, and controlling the width of the proposal density. We tested these implementations using 625 SA parameter sets, resulting from the combination of five values each for initial and final temperature, the number of temperature levels, and proposal density width. We defined an energy function that enables us to predict potentially appropriate ranges of temperature parameters that relate to minimum acceptance rate. We ran each implementation 40 times for each yield model with each parameter set. To evaluate the reliability of SA under optimal parameters, we compared the objective values for the 40 runs using the best parameter set between implementations. To evaluate robustness under suboptimal parameter settings, we compared the variation in the mean objective values for all parameter sets between implementations. The variable control method significantly affected the reliability of SA under optimal parameters. Use of the Cauchy distribution for proposal density improved robustness under suboptimal parameter settings. The widths of proposal densities were better controlled when not taking temperature into account. The effect of cooling-function choice was relatively non-significant. We identified the implementation that appears best for both evaluations, and discussed the adjustment of its parameters.

Suggested Citation

  • Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2017. "Identification of effective implementations of simulated annealing for optimizing thinning schedules for single forest stands," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1094-1108.
  • Handle: RePEc:eee:ejores:v:262:y:2017:i:3:p:1094-1108
    DOI: 10.1016/j.ejor.2017.04.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717303703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.04.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Ingber, 1993. "Simulated annealing: Practice versus theory," Lester Ingber Papers 93sa, Lester Ingber.
    2. Borges, Paulo & Eid, Tron & Bergseng, Even, 2014. "Applying simulated annealing using different methods for the neighborhood search in forest planning problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 700-710.
    3. Marutani, Teruhiko, 2010. "The effect of site quality on economically optimal stand management," Journal of Forest Economics, Elsevier, vol. 16(1), pages 35-46, January.
    4. Bettinger, Pete & Boston, Kevin & Kim, Young-Hwan & Zhu, Jianping, 2007. "Landscape-level optimization using tabu search and stand density-related forest management prescriptions," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1265-1282, January.
    5. Connolly, David T., 1990. "An improved annealing scheme for the QAP," European Journal of Operational Research, Elsevier, vol. 46(1), pages 93-100, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moriguchi, Kai, 2021. "Identifying optimal forest stand selection under subsidization using stand-level optimal harvesting schedules," Land Use Policy, Elsevier, vol. 108(C).
    2. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    2. Zeinal Hamadani, Ali & Abouei Ardakan, Mostafa & Rezvan, Taghi & Honarmandian, Mohammad Mehran, 2013. "Location-allocation problem for intra-transportation system in a big company by using meta-heuristic algorithm," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 309-317.
    3. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    4. Bergey, Paul K. & Ragsdale, Cliff, 2005. "Modified differential evolution: a greedy random strategy for genetic recombination," Omega, Elsevier, vol. 33(3), pages 255-265, June.
    5. Wildberg, Johannes & Möhring, Bernhard, 2019. "Empirical analysis of the economic effect of tree species diversity based on the results of a forest accountancy data network," Forest Policy and Economics, Elsevier, vol. 109(C).
    6. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.
    7. David Easterling & Layne Watson & Michael Madigan & Brent Castle & Michael Trosset, 2014. "Parallel deterministic and stochastic global minimization of functions with very many minima," Computational Optimization and Applications, Springer, vol. 57(2), pages 469-492, March.
    8. Van den Broeke, Maud & Boute, Robert & Cardoen, Brecht & Samii, Behzad, 2017. "An efficient solution method to design the cost-minimizing platform portfolio," European Journal of Operational Research, Elsevier, vol. 259(1), pages 236-250.
    9. Vittorio Maniezzo, 1999. "Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 358-369, November.
    10. Chuck Holland & Jack Levis & Ranganath Nuggehalli & Bob Santilli & Jeff Winters, 2017. "UPS Optimizes Delivery Routes," Interfaces, INFORMS, vol. 47(1), pages 8-23, February.
    11. L. Ingber, 2018. "Model of Models (MOM)," Lester Ingber Papers 18mo, Lester Ingber.
    12. Ingber, Lester, 2000. "High-resolution path-integral development of financial options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 529-558.
    13. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    14. Lehmann, Sebastian & Huth, Andreas, 2015. "Fast calibration of a dynamic vegetation model with minimum observation data," Ecological Modelling, Elsevier, vol. 301(C), pages 98-105.
    15. Dimitrios Karpouzos & Konstantinos Katsifarakis, 2013. "A Set of New Benchmark Optimization Problems for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3333-3348, July.
    16. Stutzle, Thomas, 2006. "Iterated local search for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1519-1539, November.
    17. Ş. Birbil & Shu-Cherng Fang & Ruey-Lin Sheu, 2004. "On the Convergence of a Population-Based Global Optimization Algorithm," Journal of Global Optimization, Springer, vol. 30(2), pages 301-318, November.
    18. Michael Saah Hayford & Bithin Datta, 2021. "Source Characterization of Multiple Reactive Species at an Abandoned Mine Site Using a Groundwater Numerical Simulation Model and Optimization Models," IJERPH, MDPI, vol. 18(9), pages 1-42, April.
    19. Wenjuan Fan & Jun Pei & Xinbao Liu & Panos M. Pardalos & Min Kong, 2018. "Serial-batching group scheduling with release times and the combined effects of deterioration and truncated job-dependent learning," Journal of Global Optimization, Springer, vol. 71(1), pages 147-163, May.
    20. Castañeda, Antonio Rafael Selva & Ramirez-Torres, Erick Eduardo & Valdés-García, Luis Eugenio & Morandeira-Padrón, Hilda María & Yanez, Diana Sedal & Montijano, Juan I. & Cabrales, Luis Enrique Bergue, 2023. "Modified SEIR epidemic model including asymptomatic and hospitalized cases with correct demographic evolution," Applied Mathematics and Computation, Elsevier, vol. 456(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:262:y:2017:i:3:p:1094-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.