IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v262y2017i1p231-238.html
   My bibliography  Save this article

Second order cone programming approach to two-stage network data envelopment analysis

Author

Listed:
  • Chen, Kun
  • Zhu, Joe

Abstract

Efficiency aggregation and efficiency decomposition are two techniques used in modeling decision making units (DMUs) with two-stage network structures under network data envelopment analysis (DEA). Multiplicative efficiency decomposition (MED) is usually used in a very specialized two-stage structure when constant returns to scale (CRS) is assumed. MED-based network DEA retains the property of the conventional DEA in the sense that input- and output-oriented models yield the same efficiency scores. Compared with the additive efficiency decomposition (AED), MED does not require predetermined weights to combine individual stage efficiencies. However, if there are external inputs to the second stage, and/or some outputs leave the first stage and do not become inputs to the second stage, or if we assume variable returns to scale (VRS), MED has limited capability to address these extensions. Alternatively, multiplicative efficiency aggregation (MEA), which is highly nonlinear and is impossible to be transformed into a linear programming problem, defines the overall efficiency as a product of stage efficiency scores and can be easily applied to general two-stage network structures. The current study discovers that MEA DEA model for general two-stage networks corresponds to a cone structure in disguise, and can be transformed into the form of second order cone programming (SOCP). Therefore, MEA in two-stage network DEA can be effectively and efficiently solved, regardless of the network structures. We show that AED can also be solved using SOCP and demonstrate that input and output-oriented AED models may not yield the same efficiency scores under CRS. The current research enables us to solve both MEA and AED using SOCP which is considered as effective as linear programming.

Suggested Citation

  • Chen, Kun & Zhu, Joe, 2017. "Second order cone programming approach to two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 262(1), pages 231-238.
  • Handle: RePEc:eee:ejores:v:262:y:2017:i:1:p:231-238
    DOI: 10.1016/j.ejor.2017.03.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717303053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.03.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Chuanyin & Abbasi Shureshjani, Roohollah & Foroughi, Ali Asghar & Zhu, Joe, 2017. "Decomposition weights and overall efficiency in two-stage additive network DEA," European Journal of Operational Research, Elsevier, vol. 257(3), pages 896-906.
    2. Castelli, Lorenzo & Pesenti, Raffaele & Ukovich, Walter, 2004. "DEA-like models for the efficiency evaluation of hierarchically structured units," European Journal of Operational Research, Elsevier, vol. 154(2), pages 465-476, April.
    3. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    4. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    5. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    6. Wade D. Cook & Joe Zhu (ed.), 2014. "Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4899-8068-7, December.
    7. Kao, Chiang & Hwang, Shiuh-Nan, 2011. "Decomposition of technical and scale efficiencies in two-stage production systems," European Journal of Operational Research, Elsevier, vol. 211(3), pages 515-519, June.
    8. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    9. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    10. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2007. "Computational strategy for Russell measure in DEA: Second-order cone programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 459-471, July.
    11. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    12. Koenker, Roger & Mizera, Ivan, 2014. "Convex Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i05).
    13. Dimitris Despotis & Gregory Koronakos & Dimitris Sotiros, 2016. "Composition versus decomposition in two-stage network DEA: a reverse approach," Journal of Productivity Analysis, Springer, vol. 45(1), pages 71-87, February.
    14. Li, Yongjun & Chen, Yao & Liang, Liang & Xie, Jianhui, 2012. "DEA models for extended two-stage network structures," Omega, Elsevier, vol. 40(5), pages 611-618.
    15. Ang, Sheng & Chen, Chien-Ming, 2016. "Pitfalls of decomposition weights in the additive multi-stage DEA model," Omega, Elsevier, vol. 58(C), pages 139-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    2. Jianhui Xie & Qiwei Xie & Yongjun Li & Liang Liang, 2021. "Solving data envelopment analysis models with sum-of-fractional objectives: a global optimal approach based on the multiparametric disaggregation technique," Annals of Operations Research, Springer, vol. 304(1), pages 453-480, September.
    3. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. N. Torabi Golsefid & M. Salahi, 2023. "An SOCP approach to a two-stage network DEA with feedbacks and shared resources," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1153-1178, September.
    5. Alireza Moradi & Saber Saati & Mehrzad Navabakhsh, 2023. "Genetic algorithms for optimizing two-stage DEA by considering unequal intermediate weights," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1202-1217, September.
    6. Alcaraz, Javier & Anton-Sanchez, Laura & Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "Russell Graph efficiency measures in Data Envelopment Analysis: The multiplicative approach," European Journal of Operational Research, Elsevier, vol. 292(2), pages 663-674.
    7. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    8. Guo, Chuanyin & Wei, Fajie & Chen, Yao, 2017. "A note on second order cone programming approach to two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 263(2), pages 733-735.
    9. Gerami, Javad & Mozaffari, Mohammad Reza & Wanke, Peter F. & Correa, Henrique L., 2022. "Improving information reliability of non-radial value efficiency analysis: An additive slacks based measure approach," European Journal of Operational Research, Elsevier, vol. 298(3), pages 967-978.
    10. Svetlana V. Ratner & Artem M. Shaposhnikov & Andrey V. Lychev, 2023. "Network DEA and Its Applications (2017–2022): A Systematic Literature Review," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
    11. Qu, Jingjing & Wang, Baohui & Liu, Xiaohong, 2022. "A modified super-efficiency network data envelopment analysis: Assessing regional sustainability performance in China," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    12. Wen-Min Lu & Qian Long Kweh & Kai-Chu Yang, 2022. "Multiplicative efficiency aggregation to evaluate Taiwanese local auditing institutions performance," Annals of Operations Research, Springer, vol. 315(2), pages 1243-1262, August.
    13. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    14. Kao, Chiang, 2018. "Multiplicative aggregation of division efficiencies in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 270(1), pages 328-336.
    15. Kremantzis, Marios Dominikos & Beullens, Patrick & Kyrgiakos, Leonidas Sotirios & Klein, Jonathan, 2022. "Measurement and evaluation of multi-function parallel network hierarchical DEA systems," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    16. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    17. Chen, Kun & Zhu, Joe, 2020. "Additive slacks-based measure: Computational strategy and extension to network DEA," Omega, Elsevier, vol. 91(C).
    18. Amir Ahmadi-Javid & Pooya Hoseinpour, 2022. "Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2621-2633, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2017. "Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 261(2), pages 679-689.
    2. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.
    3. Guo, Chuanyin & Abbasi Shureshjani, Roohollah & Foroughi, Ali Asghar & Zhu, Joe, 2017. "Decomposition weights and overall efficiency in two-stage additive network DEA," European Journal of Operational Research, Elsevier, vol. 257(3), pages 896-906.
    4. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    5. Li, Yongjun & Liu, Jin & Ang, Sheng & Yang, Feng, 2021. "Performance evaluation of two-stage network structures with fixed-sum outputs: An application to the 2018winter Olympic Games," Omega, Elsevier, vol. 102(C).
    6. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    7. Dariush Akbarian, 2021. "Network DEA based on DEA-ratio," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    8. Khoveyni, Mohammad & Fukuyama, Hirofumi & Eslami, Robabeh & Yang, Guo-liang, 2019. "Variations effect of intermediate products on the second stage in two-stage processes," Omega, Elsevier, vol. 85(C), pages 35-48.
    9. Lee, Hsuan-Shih, 2021. "Efficiency decomposition of the network DEA in variable returns to scale: An additive dissection in losses," Omega, Elsevier, vol. 100(C).
    10. Sotiros, Dimitris & Koronakos, Gregory & Despotis, Dimitris K., 2019. "Dominance at the divisional efficiencies level in network DEA: The case of two-stage processes," Omega, Elsevier, vol. 85(C), pages 144-155.
    11. Liu, Hui-hui & Yang, Guo-liang & Liu, Xiao-xiao & Song, Yao-yao, 2020. "R&D performance assessment of industrial enterprises in China: A two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    12. Patrizii, Vincenzo, 2020. "On network two stages variable returns to scale Dea models," Omega, Elsevier, vol. 97(C).
    13. Chu, Junfei & Zhu, Joe, 2021. "Production scale-based two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 294(1), pages 283-294.
    14. Zhang, Linyan & Chen, Yao, 2018. "Equivalent solutions to additive two-stage network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1189-1191.
    15. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    16. Minh‐Anh Thi Nguyen & Ming‐Miin Yu, 2020. "Decomposing the operational efficiency of major cruise lines: A network data envelopment analysis approach in the presence of shared input and quasi‐fixed input," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(8), pages 1501-1516, December.
    17. Jin, Baoling & Han, Ying & Kou, Po, 2023. "Dynamically evaluating the comprehensive efficiency of technological innovation and low-carbon economy in China's industrial sectors," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    18. Wen-Min Lu & Qian Long Kweh & Kai-Chu Yang, 2022. "Multiplicative efficiency aggregation to evaluate Taiwanese local auditing institutions performance," Annals of Operations Research, Springer, vol. 315(2), pages 1243-1262, August.
    19. Nafiseh Javaherian & Ali Hamzehee & Hossein Sayyadi Tooranloo, 2021. "A compositional approach to two-stage Data Envelopment Analysis in intuitionistic fuzzy environment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 21-39.
    20. Wade D. Cook & Chuanyin Guo & Wanghong Li & Zhepeng Li & Liang Liang & Joe Zhu, 2017. "Efficiency Measurement of Multistage Processes: Context Dependent Numbers of Stages," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:262:y:2017:i:1:p:231-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.