IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v259y2017i2p654-663.html
   My bibliography  Save this article

Approach based on fuzzy goal programing and quality function deployment for new product planning

Author

Listed:
  • Chen, Liang-Hsuan
  • Ko, Wen-Chang
  • Yeh, Feng-Ting

Abstract

Quality function deployment (QFD) is a useful planning tool for facilitating new product planning (NPP) to maximize customer satisfaction. Although customer satisfaction is an important goal in NPP, other goals must also be taken into account. The evaluation of QFD involves vagueness and imprecision and thus fuzzy approaches have been applied. This study considers the satisfaction of each customer requirement (CR) as the response variable and the fulfillment levels of the corresponding design requirements (DRs) as the explanatory variables. Each CR's satisfaction expression is formulated using the mathematical programing method. Experimental design and fuzzy sets are employed to collect the input–output data set based on the evaluated relationships between CRs and DRs and the correlations among DRs in QFD processes based on the QFD team's ability, experience, and knowledge. Considering three objectives, namely the maximum customer satisfaction, minimum incremental cost and minimum technical difficulty of DRs in NPP, an additive fuzzy goal programing model is proposed to obtain the optimal satisfaction under the preemptive priority structure of all goals. Furthermore, considering that customer satisfaction complies with Herzberg's two-factor theory, this study incorporates the concept of motivation and hygiene factors into the model, to modify the fulfillment levels of DRs to enhance customer satisfaction. A numerical example is used to demonstrate the applicability of the proposed model.

Suggested Citation

  • Chen, Liang-Hsuan & Ko, Wen-Chang & Yeh, Feng-Ting, 2017. "Approach based on fuzzy goal programing and quality function deployment for new product planning," European Journal of Operational Research, Elsevier, vol. 259(2), pages 654-663.
  • Handle: RePEc:eee:ejores:v:259:y:2017:i:2:p:654-663
    DOI: 10.1016/j.ejor.2016.10.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716308621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.10.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Liang-Hsuan & Ko, Wen-Chang, 2010. "Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept," European Journal of Operational Research, Elsevier, vol. 201(2), pages 619-632, March.
    2. Yan, Hong-Bin & Ma, Tieju, 2015. "A group decision-making approach to uncertain quality function deployment based on fuzzy preference relation and fuzzy majority," European Journal of Operational Research, Elsevier, vol. 241(3), pages 815-829.
    3. Chan, Lai-Kow & Wu, Ming-Lu, 2005. "A systematic approach to quality function deployment with a full illustrative example," Omega, Elsevier, vol. 33(2), pages 119-139, April.
    4. Goode, Sigi & Lin, Chinho & Fernandez, Walter & Jiang, James J., 2014. "Exploring two explanations of loyalty in application service provision," European Journal of Operational Research, Elsevier, vol. 237(2), pages 649-657.
    5. Chan, Lai-Kow & Wu, Ming-Lu, 2002. "Quality function deployment: A literature review," European Journal of Operational Research, Elsevier, vol. 143(3), pages 463-497, December.
    6. Pan, Jeh-Nan & Nguyen, Hung Thi Ngoc, 2015. "Achieving customer satisfaction through product–service systems," European Journal of Operational Research, Elsevier, vol. 247(1), pages 179-190.
    7. Chen, Liang-Hsuan & Tsai, Feng-Chou, 2001. "Fuzzy goal programming with different importance and priorities," European Journal of Operational Research, Elsevier, vol. 133(3), pages 548-556, September.
    8. Chen, Liang-Hsuan & Weng, Ming-Chu, 2006. "An evaluation approach to engineering design in QFD processes using fuzzy goal programming models," European Journal of Operational Research, Elsevier, vol. 172(1), pages 230-248, July.
    9. Kim, Kwang-Jae & Moskowitz, Herbert & Dhingra, Anoop & Evans, Gerald, 2000. "Fuzzy multicriteria models for quality function deployment," European Journal of Operational Research, Elsevier, vol. 121(3), pages 504-518, March.
    10. Carnevalli, Jose A. & Miguel, Paulo Cauchick, 2008. "Review, analysis and classification of the literature on QFD--Types of research, difficulties and benefits," International Journal of Production Economics, Elsevier, vol. 114(2), pages 737-754, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadabadi, Mehdi Rajabi, 2017. "A customer based supplier selection process that combines quality function deployment, the analytic network process and a Markov chain," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1049-1062.
    2. F. Franceschini & D. Maisano, 2020. "Adapting Thurstone’s Law of Comparative Judgment to fuse preference orderings in manufacturing applications," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 387-402, February.
    3. Jiawei Shi & Yan Zhou, 2022. "Group Decision Making for Product Innovation Based on PZB Model in Fuzzy Environment: A Case from New-Energy Storage Innovation Design," Mathematics, MDPI, vol. 10(19), pages 1-26, October.
    4. Wu, Xin & Nie, Lei & Xu, Meng, 2017. "Robust fuzzy quality function deployment based on the mean-end-chain concept: Service station evaluation problem for rail catering services," European Journal of Operational Research, Elsevier, vol. 263(3), pages 974-995.
    5. Liang-Hsuan Chen & Sheng-Hsing Nien, 2020. "Mathematical programming approach to formulate intuitionistic fuzzy regression model based on least absolute deviations," Fuzzy Optimization and Decision Making, Springer, vol. 19(2), pages 191-210, June.
    6. Ziyuan Tang & Hasan Dinçer, 2019. "Selecting the House-of-Quality-Based Energy Investment Policies for the Sustainable Emerging Economies," Sustainability, MDPI, vol. 11(13), pages 1-22, June.
    7. Yilmaz, Omer Faruk & Ozcelik, Gokhan & Yeni, Fatma Betul, 2020. "Lean holistic fuzzy methodology employing cross-functional worker teams for new product development projects: A real case study from high-tech industry," European Journal of Operational Research, Elsevier, vol. 282(3), pages 989-1010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Hong-Bin & Ma, Tieju, 2015. "A group decision-making approach to uncertain quality function deployment based on fuzzy preference relation and fuzzy majority," European Journal of Operational Research, Elsevier, vol. 241(3), pages 815-829.
    2. Jia Huang & Ling-Xiang Mao & Hu-Chen Liu & Min-shun Song, 2022. "Quality function deployment improvement: A bibliometric analysis and literature review," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(3), pages 1347-1366, June.
    3. Li, Yan-Lai & Tang, Jia-Fu & Chin, Kwai-Sang & Jiang, Yu-Shi & Han, Yi & Pu, Yun, 2011. "Estimating the final priority ratings of engineering characteristics in mature-period product improvement by MDBA and AHP," International Journal of Production Economics, Elsevier, vol. 131(2), pages 575-586, June.
    4. Carnevalli, Jose A. & Miguel, Paulo Cauchick, 2008. "Review, analysis and classification of the literature on QFD--Types of research, difficulties and benefits," International Journal of Production Economics, Elsevier, vol. 114(2), pages 737-754, August.
    5. Kamvysi, Konstantina & Gotzamani, Katerina & Andronikidis, Andreas & Georgiou, Andreas C., 2014. "Capturing and prioritizing students’ requirements for course design by embedding Fuzzy-AHP and linear programming in QFD," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1083-1094.
    6. Iranmanesh, Hossein & Thomson, Vince, 2008. "Competitive advantage by adjusting design characteristics to satisfy cost targets," International Journal of Production Economics, Elsevier, vol. 115(1), pages 64-71, September.
    7. J-B Yang & D-L Xu & X Xie & A K Maddulapalli, 2011. "Multicriteria evidential reasoning decision modelling and analysis—prioritizing voices of customer," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1638-1654, September.
    8. Chowdhury, Md. Maruf Hossan & Quaddus, Mohammed A., 2015. "A multiple objective optimization based QFD approach for efficient resilient strategies to mitigate supply chain vulnerabilities: The case of garment industry of Bangladesh☆,☆☆☆This manuscript was pro," Omega, Elsevier, vol. 57(PA), pages 5-21.
    9. Schillo, R. Sandra & Isabelle, Diane A. & Shakiba, Abtin, 2017. "Linking advanced biofuels policies with stakeholder interests: A method building on Quality Function Deployment," Energy Policy, Elsevier, vol. 100(C), pages 126-137.
    10. Dr. Nasser Fegh-hi Farahmand, 2013. "Teaching Strategy as Excellence Organization Mission," Indian Journal of Commerce and Management Studies, Educational Research Multimedia & Publications,India, vol. 4(2), pages 16-28, May.
    11. Chen, Liang-Hsuan & Ko, Wen-Chang, 2010. "Fuzzy linear programming models for NPD using a four-phase QFD activity process based on the means-end chain concept," European Journal of Operational Research, Elsevier, vol. 201(2), pages 619-632, March.
    12. Carnevalli, José Antonio & Miguel, Paulo Augusto Cauchick & Calarge, Felipe Araújo, 2010. "Axiomatic design application for minimising the difficulties of QFD usage," International Journal of Production Economics, Elsevier, vol. 125(1), pages 1-12, May.
    13. Lin, Ling-Zhong & Yeh, Huery-Ren & Wang, Ming-Chao, 2015. "Integration of Kano’s model into FQFD for Taiwanese Ban-Doh banquet culture," Tourism Management, Elsevier, vol. 46(C), pages 245-262.
    14. Wu, Xin & Nie, Lei & Xu, Meng, 2017. "Robust fuzzy quality function deployment based on the mean-end-chain concept: Service station evaluation problem for rail catering services," European Journal of Operational Research, Elsevier, vol. 263(3), pages 974-995.
    15. Chen, Yizeng & Fung, Richard Y.K. & Tang, Jiafu, 2006. "Rating technical attributes in fuzzy QFD by integrating fuzzy weighted average method and fuzzy expected value operator," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1553-1566, November.
    16. Hsin-Hung Wu & Jiunn-I Shieh, 2008. "Applying a markov chain model in quality function deployment," Quality & Quantity: International Journal of Methodology, Springer, vol. 42(5), pages 665-678, October.
    17. Xiaobing Li & Zhen He, 2017. "Determining importance ratings of patients’ requirements with multi-granular linguistic evaluation information," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 4110-4122, July.
    18. Ramanathan, Ramakrishnan & Yunfeng, Jiang, 2009. "Incorporating cost and environmental factors in quality function deployment using data envelopment analysis," Omega, Elsevier, vol. 37(3), pages 711-723, June.
    19. Heng Zhang & Wann-Ming Wey & Syuan-Jhang Chen, 2017. "Demand-Oriented Design Strategies for Low Environmental Impact Housing in the Tropics," Sustainability, MDPI, vol. 9(9), pages 1-21, September.
    20. Chin-Hung Liu & Hsin-Hung Wu, 2008. "A fuzzy group decision-making approach in quality function deployment," Quality & Quantity: International Journal of Methodology, Springer, vol. 42(4), pages 527-540, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:259:y:2017:i:2:p:654-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.