IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i3p746-762.html
   My bibliography  Save this article

An effective heuristic for project scheduling with resource availability cost

Author

Listed:
  • Zhu, Xia
  • Ruiz, Rubén
  • Li, Shiyu
  • Li, Xiaoping

Abstract

The resource constrained project scheduling problem (RCPSP) is widely studied in the literature and has a host of applications in practice. As a variant of the RCPSP, the resource availability cost problem (RACP), which has the aim of minimizing the availability costs of renewable resources in order to complete a project subject to a given deadline, is considered in this paper. We divide the RACP into two sub-problems: the sequencing problem and the resource decision problem, and propose a multi-start iterative search heuristic (MSIS) to solve it. For the sequencing problem, an iterative search framework is constructed to effectively search the activity sequences. A two stage resource adjustment procedure and a backward peak elimination procedure is developed for solving the resource decision problem. MSIS is compared with three existing algorithms on both PSPLib and RanGen data sets involving 1380 instances. A complete calibration of the different parameters and operators of MSIS by means of a design of experiments approach is given. Experimental and statistical results show that MSIS outperforms the other three algorithms in both effectiveness and efficiency by a significant margin.

Suggested Citation

  • Zhu, Xia & Ruiz, Rubén & Li, Shiyu & Li, Xiaoping, 2017. "An effective heuristic for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 257(3), pages 746-762.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:746-762
    DOI: 10.1016/j.ejor.2016.08.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716306889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.08.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erik Demeulemeester, 1995. "Minimizing Resource Availability Costs in Time-Limited Project Networks," Management Science, INFORMS, vol. 41(10), pages 1590-1598, October.
    2. Hartmann, Sonke & Kolisch, Rainer, 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 394-407, December.
    3. Yamashita, Denise Sato & Armentano, Vinicius Amaral & Laguna, Manuel, 2006. "Scatter search for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 169(2), pages 623-637, March.
    4. Vanhoucke, Mario & Coelho, José, 2016. "An approach using SAT solvers for the RCPSP with logical constraints," European Journal of Operational Research, Elsevier, vol. 249(2), pages 577-591.
    5. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    6. Shadrokh, Shahram & Kianfar, Fereydoon, 2007. "A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty," European Journal of Operational Research, Elsevier, vol. 181(1), pages 86-101, August.
    7. Hartmann, Sönke & Kolisch, R., 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 11180, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Rodrigues, Sávio B. & Yamashita, Denise S., 2010. "An exact algorithm for minimizing resource availability costs in project scheduling," European Journal of Operational Research, Elsevier, vol. 206(3), pages 562-568, November.
    9. Li, Haitao & Womer, Norman K., 2015. "Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 246(1), pages 20-33.
    10. A Drexl & A Kimms, 2001. "Optimization guided lower and upper bounds for the resource investment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 340-351, March.
    11. Kolisch, Rainer & Sprecher, Arno, 1997. "PSPLIB - A project scheduling problem library : OR Software - ORSEP Operations Research Software Exchange Program," European Journal of Operational Research, Elsevier, vol. 96(1), pages 205-216, January.
    12. Yang, Kum-Khiong, 1998. "A comparison of dispatching rules for executing a resource-constrained project with estimated activity durations," Omega, Elsevier, vol. 26(6), pages 729-738, December.
    13. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    2. Seyed Mahmoud Zanjirchi & Mina Rezaeian Abrishami & Negar Jalilian, 2019. "Four decades of fuzzy sets theory in operations management: application of life-cycle, bibliometrics and content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1289-1309, June.
    3. Felix Hübner & Patrick Gerhards & Christian Stürck & Rebekka Volk, 2021. "Solving the nuclear dismantling project scheduling problem by combining mixed-integer and constraint programming techniques and metaheuristics," Journal of Scheduling, Springer, vol. 24(3), pages 269-290, June.
    4. Patrick Gerhards, 2020. "The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 901-933, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    2. Rodrigues, Sávio B. & Yamashita, Denise S., 2010. "An exact algorithm for minimizing resource availability costs in project scheduling," European Journal of Operational Research, Elsevier, vol. 206(3), pages 562-568, November.
    3. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    4. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    5. Masoud Arjmand & Amir Abbas Najafi & Majid Ebrahimzadeh, 2020. "Evolutionary algorithms for multi-objective stochastic resource availability cost problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 935-985, September.
    6. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    7. Patrick Gerhards, 2020. "The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 901-933, December.
    8. Kreter, Stefan & Schutt, Andreas & Stuckey, Peter J. & Zimmermann, Jürgen, 2018. "Mixed-integer linear programming and constraint programming formulations for solving resource availability cost problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 472-486.
    9. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    10. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    11. Yamashita, Denise Sato & Armentano, Vinicius Amaral & Laguna, Manuel, 2006. "Scatter search for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 169(2), pages 623-637, March.
    12. Aria Shahsavar & Nima Zoraghi & Babak Abbasi, 2018. "Integration of resource investment problem with quantity discount problem in material ordering for minimizing resource costs of projects," Operational Research, Springer, vol. 18(2), pages 315-342, July.
    13. Carlo Meloni & Marco Pranzo, 2020. "Expected shortfall for the makespan in activity networks under imperfect information," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 668-692, September.
    14. Lova, Antonio & Tormos, Pilar & Cervantes, Mariamar & Barber, Federico, 2009. "An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes," International Journal of Production Economics, Elsevier, vol. 117(2), pages 302-316, February.
    15. Grzegorz Waligóra, 2016. "Comparative Analysis of Some Metaheuristics for Discrete-Continuous Project Scheduling with Activities of Identical Processing Rates," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-32, June.
    16. Zhenyuan Liu & Lei Xiao & Jing Tian, 2016. "An activity-list-based nested partitions algorithm for resource-constrained project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4744-4758, August.
    17. Guo, Weikang & Vanhoucke, Mario & Coelho, José, 2023. "A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 579-595.
    18. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2014. "Approximability results for the resource-constrained project scheduling problem with a single type of resources," Annals of Operations Research, Springer, vol. 213(1), pages 115-130, February.
    19. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    20. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:3:p:746-762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.