IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v256y2017i1p44-54.html
   My bibliography  Save this article

Optimal allocation of buffer times to increase train schedule robustness

Author

Listed:
  • Jovanović, Predrag
  • Kecman, Pavle
  • Bojović, Nebojša
  • Mandić, Dragomir

Abstract

Reliability and punctuality of railway traffic are among the key performance indicators, which have a significant impact on user satisfaction. A way to improve the reliability and on-time performance in the timetable design stage is by improving the timetable robustness. In order to increase the robustness, most railway companies in Europe insert a fixed amount of buffer time between possibly conflicting events in order to reduce or prevent delay propagation if the first event occurs with a delay. However, this often causes an increase of capacity consumption which is a problem for heavily utilised lines. A sufficient amount of buffer time can therefore not be added between every two conflicting events. Thus, buffer times need to be allocated carefully to protect events with the highest priority. In this paper we consider the problem of increasing the robustness of a timetable by finding an optimal allocation of buffer times on a railway corridor. We model this resource allocation problem as a knapsack problem, where each candidate buffer time is treated as an object with the value (priority for buffer time assignment) determined according to the commercial and operational criteria, and size equal to its time duration. The validity of the presented approach is demonstrated on a case study from a busy mixed-traffic line in Sweden.

Suggested Citation

  • Jovanović, Predrag & Kecman, Pavle & Bojović, Nebojša & Mandić, Dragomir, 2017. "Optimal allocation of buffer times to increase train schedule robustness," European Journal of Operational Research, Elsevier, vol. 256(1), pages 44-54.
  • Handle: RePEc:eee:ejores:v:256:y:2017:i:1:p:44-54
    DOI: 10.1016/j.ejor.2016.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716303332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    2. Törnquist, Johanna & Persson, Jan A., 2007. "N-tracked railway traffic re-scheduling during disturbances," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 342-362, March.
    3. Goverde, Rob M.P., 2007. "Railway timetable stability analysis using max-plus system theory," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 179-201, February.
    4. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    5. Valentina Cacchiani & Alberto Caprara & Matteo Fischetti, 2012. "A Lagrangian Heuristic for Robustness, with an Application to Train Timetabling," Transportation Science, INFORMS, vol. 46(1), pages 124-133, February.
    6. Vromans, Michiel J.C.M. & Dekker, Rommert & Kroon, Leo G., 2006. "Reliability and heterogeneity of railway services," European Journal of Operational Research, Elsevier, vol. 172(2), pages 647-665, July.
    7. Yuan, Jianxin & Hansen, Ingo A., 2007. "Optimizing capacity utilization of stations by estimating knock-on train delays," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 202-217, February.
    8. Carey, Malachy, 1999. "Ex ante heuristic measures of schedule reliability," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 473-494, September.
    9. Lars-Göran Mattsson, 2007. "Railway Capacity and Train Delay Relationships," Advances in Spatial Science, in: Alan T. Murray & Tony H. Grubesic (ed.), Critical Infrastructure, chapter 7, pages 129-150, Springer.
    10. Meester, Ludolf E. & Muns, Sander, 2007. "Stochastic delay propagation in railway networks and phase-type distributions," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 218-230, February.
    11. Matteo Fischetti & Domenico Salvagnin & Arrigo Zanette, 2009. "Fast Approaches to Improve the Robustness of a Railway Timetable," Transportation Science, INFORMS, vol. 43(3), pages 321-335, August.
    12. Alex Landex, 2009. "Evaluation of Railway Networks with Single Track Operation Using the UIC 406 Capacity Method," Networks and Spatial Economics, Springer, vol. 9(1), pages 7-23, March.
    13. Burdett, Robert L., 2015. "Multi-objective models and techniques for analysing the absolute capacity of railway networks," European Journal of Operational Research, Elsevier, vol. 245(2), pages 489-505.
    14. Vansteenwegen, P. & Oudheusden, D. Van, 2006. "Developing railway timetables which guarantee a better service," European Journal of Operational Research, Elsevier, vol. 173(1), pages 337-350, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    2. Junguang Zhang & Xiwei Song & Estrella Díaz, 2017. "Critical chain project buffer sizing based on resource constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(3), pages 671-683, February.
    3. Maosheng Li & Qing Huang & Lixuan Yao & Yongliang Wang, 2020. "Suitability Evaluation of a Train’s Scheduled Section Travel Time," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    4. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    5. Yang, Kaidi & Roca-Riu, Mireia & Menéndez, Mónica, 2019. "An auction-based approach for prebooked urban logistics facilities," Omega, Elsevier, vol. 89(C), pages 193-211.
    6. Yan Zhao & Nanfang Cui & Wendi Tian, 2020. "A two-stage approach for the critical chain project rescheduling," Annals of Operations Research, Springer, vol. 285(1), pages 67-95, February.
    7. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    8. Franciszek Restel & Łukasz Wolniewicz & Matea Mikulčić, 2021. "Method for Designing Robust and Energy Efficient Railway Schedules," Energies, MDPI, vol. 14(24), pages 1-12, December.
    9. Högdahl, Johan & Bohlin, Markus & Fröidh, Oskar, 2019. "A combined simulation-optimization approach for minimizing travel time and delays in railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 192-212.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    2. Jens Parbo & Otto Anker Nielsen & Carlo Giacomo Prato, 2016. "Passenger Perspectives in Railway Timetabling: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 500-526, July.
    3. Harshad Khadilkar, 2017. "Data-Enabled Stochastic Modeling for Evaluating Schedule Robustness of Railway Networks," Transportation Science, INFORMS, vol. 51(4), pages 1161-1176, November.
    4. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    5. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    6. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.
    7. Högdahl, Johan & Bohlin, Markus & Fröidh, Oskar, 2019. "A combined simulation-optimization approach for minimizing travel time and delays in railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 192-212.
    8. Maosheng Li & Zhengqiu Liu & Yonghong Zhang & Weijun Liu & Feng Shi, 2017. "Distribution analysis of train interval journey time employing the censored model with shifting character," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 715-733, March.
    9. Yang, Lixing & Zhou, Xuesong & Gao, Ziyou, 2014. "Credibility-based rescheduling model in a double-track railway network: a fuzzy reliable optimization approach," Omega, Elsevier, vol. 48(C), pages 75-93.
    10. Jiateng Yin & Lixing Yang & Xuesong Zhou & Tao Tang & Ziyou Gao, 2019. "Balancing a one‐way corridor capacity and safety‐oriented reliability: A stochastic optimization approach for metro train timetabling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 297-320, June.
    11. Franciszek Restel & Łukasz Wolniewicz & Matea Mikulčić, 2021. "Method for Designing Robust and Energy Efficient Railway Schedules," Energies, MDPI, vol. 14(24), pages 1-12, December.
    12. Lee, Yusin & Lu, Li-Sin & Wu, Mei-Ling & Lin, Dung-Ying, 2017. "Balance of efficiency and robustness in passenger railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 142-156.
    13. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    14. Julius Pätzold, 2021. "Finding robust periodic timetables by integrating delay management," Public Transport, Springer, vol. 13(2), pages 349-374, June.
    15. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    16. Gábor Maróti, 2017. "A branch-and-bound approach for robust railway timetabling," Public Transport, Springer, vol. 9(1), pages 73-94, July.
    17. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    18. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    19. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    20. Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:256:y:2017:i:1:p:44-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.