IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v251y2016i3p814-829.html
   My bibliography  Save this article

Models for assembly line balancing by temporal, spatial and ergonomic risk attributes

Author

Listed:
  • Bautista, Joaquín
  • Batalla-García, Cristina
  • Alfaro-Pozo, Rocío

Abstract

Assembly lines with mixed products present ergonomic risks that can affect productivity of workers and lines. Because of that, the line balancing must consider the risk of injury in regard with the set of tasks necessary to process a product unit, in addition to other managerial and technological attributes such as the workload or the space. Therefore, in this paper we propose a new approach to solve the assembly line balancing problem considering temporal, spatial and ergonomic attributes at once. We formulate several mathematical models and we analyze the behavior of one of these models through case study linked to Nissan. Furthermore, we study the effect of the demand plan variations and ergonomic risk on the line balancing result.

Suggested Citation

  • Bautista, Joaquín & Batalla-García, Cristina & Alfaro-Pozo, Rocío, 2016. "Models for assembly line balancing by temporal, spatial and ergonomic risk attributes," European Journal of Operational Research, Elsevier, vol. 251(3), pages 814-829.
  • Handle: RePEc:eee:ejores:v:251:y:2016:i:3:p:814-829
    DOI: 10.1016/j.ejor.2015.12.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715011819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.12.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bautista, Joaquin & Pereira, Jordi, 2007. "Ant algorithms for a time and space constrained assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2016-2032, March.
    2. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    3. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    4. Otto, Alena & Scholl, Armin, 2011. "Incorporating ergonomic risks into assembly line balancing," European Journal of Operational Research, Elsevier, vol. 212(2), pages 277-286, July.
    5. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    6. .Ilker Baybars, 1986. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem," Management Science, INFORMS, vol. 32(8), pages 909-932, August.
    7. Chica, Manuel & Bautista, Joaquín & Cordón, Óscar & Damas, Sergio, 2016. "A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand," Omega, Elsevier, vol. 58(C), pages 55-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Chica & Joaquín Bautista & Jesica de Armas, 2019. "Benefits of robust multiobjective optimization for flexible automotive assembly line balancing," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 75-103, March.
    2. Marco Trost & Thorsten Claus & Frank Herrmann, 2022. "Social Sustainability in Production Planning: A Systematic Literature Review," Sustainability, MDPI, vol. 14(13), pages 1-31, July.
    3. Marco Trost & Thorsten Claus & Frank Herrmann, 2023. "Master Production Scheduling with Consideration of Utilization-Dependent Exhaustion and Capacity Load," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    4. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    5. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    6. Tiacci, Lorenzo & Mimmi, Mario, 2018. "Integrating ergonomic risks evaluation through OCRA index and balancing/sequencing decisions for mixed model stochastic asynchronous assembly lines," Omega, Elsevier, vol. 78(C), pages 112-138.
    7. Ozdemir, Rifat & Sarigol, Ilkan & AlMutairi, Sarah & AlMeea, Sarah & Murad, Abrar & Naqi, Aseel & AlNasser, Noor, 2021. "Fuzzy multi-objective model for assembly line balancing with ergonomic risks consideration," International Journal of Production Economics, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    2. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    3. Lopes, Thiago Cantos & Sikora, C.G.S. & Molina, Rafael Gobbi & Schibelbain, Daniel & Rodrigues, L.C.A. & Magatão, Leandro, 2017. "Balancing a robotic spot welding manufacturing line: An industrial case study," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1033-1048.
    4. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    5. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    6. Tiacci, Lorenzo & Mimmi, Mario, 2018. "Integrating ergonomic risks evaluation through OCRA index and balancing/sequencing decisions for mixed model stochastic asynchronous assembly lines," Omega, Elsevier, vol. 78(C), pages 112-138.
    7. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    8. Eduardo Álvarez-Miranda & Jordi Pereira & Harold Torrez-Meruvia & Mariona Vilà, 2021. "A Hybrid Genetic Algorithm for the Simple Assembly Line Balancing Problem with a Fixed Number of Workstations," Mathematics, MDPI, vol. 9(17), pages 1-19, September.
    9. Koltai, Tamás & Dimény, Imre & Gallina, Viola & Gaal, Alexander & Sepe, Chiara, 2021. "An analysis of task assignment and cycle times when robots are added to human-operated assembly lines, using mathematical programming models," International Journal of Production Economics, Elsevier, vol. 242(C).
    10. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    11. Manuel Chica & Joaquín Bautista & Jesica de Armas, 2019. "Benefits of robust multiobjective optimization for flexible automotive assembly line balancing," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 75-103, March.
    12. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.
    13. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    14. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    15. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).
    16. Klindworth, Hanne & Otto, Christian & Scholl, Armin, 2012. "On a learning precedence graph concept for the automotive industry," European Journal of Operational Research, Elsevier, vol. 217(2), pages 259-269.
    17. Otto, Alena & Scholl, Armin, 2011. "Incorporating ergonomic risks into assembly line balancing," European Journal of Operational Research, Elsevier, vol. 212(2), pages 277-286, July.
    18. Otto, Alena & Li, Xiyu, 2020. "Product sequencing in multiple-piece-flow assembly lines," Omega, Elsevier, vol. 91(C).
    19. Kucukkoc, Ibrahim & Li, Zixiang & Karaoglan, Aslan D. & Zhang, David Z., 2018. "Balancing of mixed-model two-sided assembly lines with underground workstations: A mathematical model and ant colony optimization algorithm," International Journal of Production Economics, Elsevier, vol. 205(C), pages 228-243.
    20. Michels, Adalberto Sato & Lopes, Thiago Cantos & Sikora, Celso Gustavo Stall & Magatão, Leandro, 2019. "A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 278(3), pages 796-808.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:251:y:2016:i:3:p:814-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.