IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v250y2016i1p101-119.html
   My bibliography  Save this article

The vehicle-routing problem with time windows and driver-specific times

Author

Listed:
  • Schneider, Michael

Abstract

This paper proposes a tabu search algorithm for the vehicle-routing problem with time windows and driver-specific times (VRPTWDST), a variant of the classical VRPTW that uses driver-specific travel and service times to model the familiarity of the different drivers with the customers to visit. We carry out a systematic investigation of the problem on a comprehensive set of newly generated benchmark instances. We find that consideration of driver knowledge in the route planning clearly improves the efficiency of vehicle routes, an effect that intensifies for higher familiarity levels of the drivers. Increased benefits are produced if the familiar customers of drivers are geographically contiguous. Moreover, a higher number of drivers that are familiar with the same (larger) region provides higher benefits compared to a scenario where each driver is only familiar with a dedicated (smaller) region. Finally, our tabu search is able to prove its performance on the Solomon test instances of the closely related VRPTW, yielding high-quality solutions in short time.

Suggested Citation

  • Schneider, Michael, 2016. "The vehicle-routing problem with time windows and driver-specific times," European Journal of Operational Research, Elsevier, vol. 250(1), pages 101-119.
  • Handle: RePEc:eee:ejores:v:250:y:2016:i:1:p:101-119
    DOI: 10.1016/j.ejor.2015.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715008395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F-H Liu & S-Y Shen, 1999. "The fleet size and mix vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 721-732, July.
    2. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    3. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    4. Ilgaz Sungur & Yingtao Ren & Fernando Ordóñez & Maged Dessouky & Hongsheng Zhong, 2010. "A Model and Algorithm for the Courier Delivery Problem with Uncertainty," Transportation Science, INFORMS, vol. 44(2), pages 193-205, May.
    5. T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
    6. Mauro Dell'Amico & Michele Monaci & Corrado Pagani & Daniele Vigo, 2007. "Heuristic Approaches for the Fleet Size and Mix Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 41(4), pages 516-526, November.
    7. Irnich, S. & Schneider, M. & Vigo, D., 2014. "Four Variants of the Vehicle Routing Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63514, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Haughton, Michael A., 2008. "The efficacy of exclusive territory assignments to delivery vehicle drivers," European Journal of Operational Research, Elsevier, vol. 184(1), pages 24-38, January.
    9. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    10. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    11. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    12. Billy E. Gillett & Leland R. Miller, 1974. "A Heuristic Algorithm for the Vehicle-Dispatch Problem," Operations Research, INFORMS, vol. 22(2), pages 340-349, April.
    13. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    14. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    15. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    16. Wasner, Michael & Zapfel, Gunther, 2004. "An integrated multi-depot hub-location vehicle routing model for network planning of parcel service," International Journal of Production Economics, Elsevier, vol. 90(3), pages 403-419, August.
    17. Schneider, M. & Doppstadt, C. & Sand, B. & Stenger, A. & Schwind, M., 2010. "A Vehicle Routing Problem with Time Windows and Driver Familiarity," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62379, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Schneider, M. & Doppstadt, C. & Stenger, A. & Schwind, M., 2010. "Ant Colony Optimization for a Stochastic Vehicle Routing Problem with Driver Learning," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62380, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Dondo, Rodolfo & Cerda, Jaime, 2007. "A cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1478-1507, February.
    20. Paolo Toth & Daniele Vigo, 2003. "The Granular Tabu Search and Its Application to the Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 333-346, November.
    21. Schneider, M. & Sand, B. & Stenger, A., 2013. "A Note on the Time Travel Approach for Handling Time Windows in Vehicle Routing Problems," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62373, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    22. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    23. Goel, Asvin & Gruhn, Volker, 2008. "A General Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 650-660, December.
    24. J-F Cordeau & G Laporte & A Mercier, 2001. "A unified tabu search heuristic for vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(8), pages 928-936, August.
    25. Hongsheng Zhong & Randolph W. Hall & Maged Dessouky, 2007. "Territory Planning and Vehicle Dispatching with Driver Learning," Transportation Science, INFORMS, vol. 41(1), pages 74-89, February.
    26. Martin W. P. Savelsbergh, 1992. "The Vehicle Routing Problem with Time Windows: Minimizing Route Duration," INFORMS Journal on Computing, INFORMS, vol. 4(2), pages 146-154, May.
    27. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Ousmane & Côté, Jean-François & Coelho, Leandro C., 2021. "Models and algorithms for the delivery and installation routing problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 162-177.
    2. Bock, Stefan, 2020. "Optimally solving a versatile Traveling Salesman Problem on tree networks with soft due dates and multiple congestion scenarios," European Journal of Operational Research, Elsevier, vol. 283(3), pages 863-882.
    3. Huang Huang & Xinwei Cuan & Zhuo Chen & Lina Zhang & Hao Chen, 2023. "A Multiregional Agricultural Machinery Scheduling Method Based on Hybrid Particle Swarm Optimization Algorithm," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    4. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    5. Runfeng Yu & Lifen Yun & Chen Chen & Yuanjie Tang & Hongqiang Fan & Yi Qin, 2023. "Vehicle Routing Optimization for Vaccine Distribution Considering Reducing Energy Consumption," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    6. Yao, Yu & Van Woensel, Tom & Veelenturf, Lucas P. & Mo, Pengli, 2021. "The consistent vehicle routing problem considering path consistency in a road network," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 21-44.
    7. Bakker, Steffen J. & Wang, Akang & Gounaris, Chrysanthos E., 2021. "Vehicle routing with endogenous learning: Application to offshore plug and abandonment campaign planning," European Journal of Operational Research, Elsevier, vol. 289(1), pages 93-106.
    8. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    9. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schneider, M., 2016. "The vehicle-routing problem with time windows and driver-specific times," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65941, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    3. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    4. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    5. Michael Schneider & Andreas Stenger & Fabian Schwahn & Daniele Vigo, 2015. "Territory-Based Vehicle Routing in the Presence of Time-Window Constraints," Transportation Science, INFORMS, vol. 49(4), pages 732-751, November.
    6. Alcaraz, Juan J. & Caballero-Arnaldos, Luis & Vales-Alonso, Javier, 2019. "Rich vehicle routing problem with last-mile outsourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 263-286.
    7. Hoogeboom, Maaike & Dullaert, Wout, 2019. "Vehicle routing with arrival time diversification," European Journal of Operational Research, Elsevier, vol. 275(1), pages 93-107.
    8. Jean-Yves Potvin, 2009. "State-of-the Art Review ---Evolutionary Algorithms for Vehicle Routing," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 518-548, November.
    9. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    10. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    11. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    12. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Ehsan Khodabandeh & Lihui Bai & Sunderesh S. Heragu & Gerald W. Evans & Thomas Elrod & Mark Shirkness, 2017. "Modelling and solution of a large-scale vehicle routing problem at GE appliances & lighting," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1100-1116, February.
    14. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    15. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    16. Olli Bräysy & Wout Dullaert & Geir Hasle & David Mester & Michel Gendreau, 2008. "An Effective Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix Vehicle-Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 371-386, August.
    17. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    18. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    19. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    20. Maaike Hoogeboom & Wout Dullaert & David Lai & Daniele Vigo, 2020. "Efficient Neighborhood Evaluations for the Vehicle Routing Problem with Multiple Time Windows," Transportation Science, INFORMS, vol. 54(2), pages 400-416, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:250:y:2016:i:1:p:101-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.