Advanced Search
MyIDEAS: Login

Generalization of the weighted voting method using penalty functions constructed via faithful restricted dissimilarity functions

Contents:

Author Info

  • Bustince, H.
  • Jurio, A.
  • Pradera, A.
  • Mesiar, R.
  • Beliakov, G.
Registered author(s):

    Abstract

    In this paper we present a generalization of the weighted voting method used in the exploitation phase of decision making problems represented by preference relations. For each row of the preference relation we take the aggregation function (from a given set) that provides the value which is the least dissimilar with all the elements in that row. Such a value is obtained by means of the selected penalty function. The relation between the concepts of penalty function and dissimilarity has prompted us to study a construction method for penalty functions from the well-known restricted dissimilarity functions. The development of this method has led us to consider under which conditions restricted dissimilarity functions are faithful. We present a characterization theorem of such functions using automorphisms. Finally, we also consider under which conditions we can build penalty functions from Kolmogoroff and Nagumo aggregation functions. In this setting, we propose a new generalization of the weighted voting method in terms of one single variable functions. We conclude with a real, illustrative medical case, conclusions and future research lines.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712007369
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 225 (2013)
    Issue (Month): 3 ()
    Pages: 472-478

    as in new window
    Handle: RePEc:eee:ejores:v:225:y:2013:i:3:p:472-478

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/eor

    Related research

    Keywords: Restricted dissimilarity function; Penalty function; Selection process; Weighted voting method;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Herrera, F. & Martinez, L. & Sanchez, P. J., 2005. "Managing non-homogeneous information in group decision making," European Journal of Operational Research, Elsevier, vol. 166(1), pages 115-132, October.
    2. Dubois, Didier & Prade, Henri & Sabbadin, Regis, 2001. "Decision-theoretic foundations of qualitative possibility theory," European Journal of Operational Research, Elsevier, vol. 128(3), pages 459-478, February.
    3. Mesiar, R., 2007. "Fuzzy set approach to the utility, preference relations, and aggregation operators," European Journal of Operational Research, Elsevier, vol. 176(1), pages 414-422, January.
    4. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    5. Liu, Fang & Zhang, Wei-Guo & Wang, Zhong-Xing, 2012. "A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making," European Journal of Operational Research, Elsevier, vol. 218(3), pages 747-754.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:225:y:2013:i:3:p:472-478. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.