IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v218y2012i2p351-357.html
   My bibliography  Save this article

Improved estimation of duality gap in binary quadratic programming using a weighted distance measure

Author

Listed:
  • Xia, Yong
  • Sheu, Ruey-Lin
  • Sun, Xiaoling
  • Li, Duan

Abstract

We present in this paper an improved estimation of duality gap between binary quadratic program and its Lagrangian dual. More specifically, we obtain this improved estimation using a weighted distance measure between the binary set and certain affine subspace. We show that the optimal weights can be computed by solving a semidefinite programming problem. We further establish a necessary and sufficient condition under which the weighted distance measure gives a strictly tighter estimation of the duality gap than the existing estimations.

Suggested Citation

  • Xia, Yong & Sheu, Ruey-Lin & Sun, Xiaoling & Li, Duan, 2012. "Improved estimation of duality gap in binary quadratic programming using a weighted distance measure," European Journal of Operational Research, Elsevier, vol. 218(2), pages 351-357.
  • Handle: RePEc:eee:ejores:v:218:y:2012:i:2:p:351-357
    DOI: 10.1016/j.ejor.2011.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711009738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferrez, J.-A. & Fukuda, K. & Liebling, Th.M., 2005. "Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm," European Journal of Operational Research, Elsevier, vol. 166(1), pages 35-50, October.
    2. Helmberg, C., 2002. "Semidefinite programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 461-482, March.
    3. NESTEROV, Yu., 1998. "Semidefinite relaxation and nonconvex quadratic optimization," LIDAM Reprints CORE 1362, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Duan Li & Xiaoling Sun, 2006. "Nonlinear Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-32995-6, September.
    5. Alidaee, Bahram & Glover, Fred & Kochenberger, Gary & Wang, Haibo, 2007. "Solving the maximum edge weight clique problem via unconstrained quadratic programming," European Journal of Operational Research, Elsevier, vol. 181(2), pages 592-597, September.
    6. Xiaojin Zheng & Xiaoling Sun & Duan Li & Yong Xia, 2010. "Duality Gap Estimation of Linear Equality Constrained Binary Quadratic Programming," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 864-880, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2020. "A Lagrangian Bound on the Clique Number and an Exact Algorithm for the Maximum Edge Weight Clique Problem," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 747-762, July.
    2. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Discussion Paper 2011-060, Tilburg University, Center for Economic Research.
    3. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
    4. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    5. Wei Xia & Juan C. Vera & Luis F. Zuluaga, 2020. "Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 40-56, January.
    6. Carvalho, Filipa D. & Almeida, M. Teresa, 2011. "Upper bounds and heuristics for the 2-club problem," European Journal of Operational Research, Elsevier, vol. 210(3), pages 489-494, May.
    7. Guo, Jian-Xin & Huang, Chen, 2020. "Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050," Applied Energy, Elsevier, vol. 259(C).
    8. Cascón, J.M. & González-Arteaga, T. & de Andrés Calle, R., 2019. "Reaching social consensus family budgets: The Spanish case," Omega, Elsevier, vol. 86(C), pages 28-41.
    9. Zhou, Yi & Hao, Jin-Kao & Goëffon, Adrien, 2017. "PUSH: A generalized operator for the Maximum Vertex Weight Clique Problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 41-54.
    10. Hezhi Luo & Xiaodi Bai & Jiming Peng, 2019. "Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 964-992, March.
    11. Fatima Bellahcene, 2019. "Application of the polyblock method to special integer chance constrained problem," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 23-40.
    12. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    13. Immanuel M. Bomze & Michael Kahr & Markus Leitner, 2021. "Trust Your Data or Not—StQP Remains StQP: Community Detection via Robust Standard Quadratic Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 301-316, February.
    14. Eranda Çela & Bettina Klinz & Christophe Meyer, 2006. "Polynomially solvable cases of the constant rank unconstrained quadratic 0-1 programming problem," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 187-215, November.
    15. L. Escudero & M. Garín & G. Pérez & A. Unzueta, 2012. "Lagrangian Decomposition for large-scale two-stage stochastic mixed 0-1 problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 347-374, July.
    16. Teobaldo Bulhões & Anand Subramanian & Gilberto F. Sousa Filho & Lucídio dos Anjos F. Cabral, 2017. "Branch-and-price for p-cluster editing," Computational Optimization and Applications, Springer, vol. 67(2), pages 293-316, June.
    17. Kouhei Harada, 2021. "A Feasibility-Ensured Lagrangian Heuristic for General Decomposable Problems," SN Operations Research Forum, Springer, vol. 2(4), pages 1-26, December.
    18. Bin Zhang & Bo Chen, 2012. "Heuristic And Exact Solution Method For Convex Nonlinear Knapsack Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-14.
    19. D. Henrion & S. Tarbouriech & D. Arzelier, 2001. "LMI Approximations for the Radius of the Intersection of Ellipsoids: Survey," Journal of Optimization Theory and Applications, Springer, vol. 108(1), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:2:p:351-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.