IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i1p82-88.html
   My bibliography  Save this article

Embedding learning capability in Lagrangean relaxation: An application to the travelling salesman problem

Author

Listed:
  • Zamani, Reza
  • Lau, Sim Kim

Abstract

This paper presents an effective procedure that finds lower bounds for the travelling salesman problem based on the 1-tree using a learning-based Lagrangian relaxation technique. The procedure can dynamically alter its step-size depending upon its previous iterations. Along with having the capability of expansion-contraction, the procedure performs a learning process in which Lagrange multipliers are influenced by a weighted cost function of their neighbouring nodes. In analogy with simulated annealing paradigm, here a learning process is equivalent to escaping local optimality via exploiting the structure of the problem. Computational results conducted on Euclidean benchmarks from the TSPLIB library show that the procedure is very effective.

Suggested Citation

  • Zamani, Reza & Lau, Sim Kim, 2010. "Embedding learning capability in Lagrangean relaxation: An application to the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 82-88, February.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:82-88
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00073-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monique Guignard, 2003. "Lagrangean relaxation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 151-200, December.
    2. Volgenant, Ton & Jonker, Roy, 1982. "A branch and bound algorithm for the symmetric traveling salesman problem based on the 1-tree relaxation," European Journal of Operational Research, Elsevier, vol. 9(1), pages 83-89, January.
    3. Baker, Barrie M. & Sheasby, Janice, 1999. "Accelerating the convergence of subgradient optimisation," European Journal of Operational Research, Elsevier, vol. 117(1), pages 136-144, August.
    4. Lorena, Luiz Antonio N. & Goncalves Narciso, Marcelo, 2002. "Using logical surrogate information in Lagrangean relaxation: An application to symmetric traveling salesman problems," European Journal of Operational Research, Elsevier, vol. 138(3), pages 473-483, May.
    5. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    6. P M E Shutler, 2003. "A priority list based heuristic for the job shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 571-584, June.
    7. Ravi, R. & Sinha, Amitabh, 2008. "Approximating k-cuts using network strength as a Lagrangean relaxation," European Journal of Operational Research, Elsevier, vol. 186(1), pages 77-90, April.
    8. Michael Held & Richard M. Karp, 1970. "The Traveling-Salesman Problem and Minimum Spanning Trees," Operations Research, INFORMS, vol. 18(6), pages 1138-1162, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zamani, Reza, 2013. "A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 552-559.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Rius-Sorolla & J. Maheut & Jairo R. Coronado-Hernandez & J. P. Garcia-Sabater, 2020. "Lagrangian relaxation of the generic materials and operations planning model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 105-123, March.
    2. Peter Reiter & Walter Gutjahr, 2012. "Exact hybrid algorithms for solving a bi-objective vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(1), pages 19-43, March.
    3. Laureano Escudero, 2009. "On a mixture of the fix-and-relax coordination and Lagrangian substitution schemes for multistage stochastic mixed integer programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 5-29, July.
    4. Marcel Turkensteen & Dmitry Malyshev & Boris Goldengorin & Panos M. Pardalos, 2017. "The reduction of computation times of upper and lower tolerances for selected combinatorial optimization problems," Journal of Global Optimization, Springer, vol. 68(3), pages 601-622, July.
    5. Igor Litvinchev & Socorro Rangel & Jania Saucedo, 2010. "A Lagrangian bound for many-to-many assignment problems," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 241-257, April.
    6. Fatemeh Keshavarz-Ghorbani & Seyed Hamid Reza Pasandideh, 2022. "A Lagrangian relaxation algorithm for optimizing a bi-objective agro-supply chain model considering CO2 emissions," Annals of Operations Research, Springer, vol. 314(2), pages 497-527, July.
    7. Lorena, Luiz Antonio N. & Goncalves Narciso, Marcelo, 2002. "Using logical surrogate information in Lagrangean relaxation: An application to symmetric traveling salesman problems," European Journal of Operational Research, Elsevier, vol. 138(3), pages 473-483, May.
    8. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2015. "A location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 238-255.
    9. Öztürkoğlu, Ömer & Hoser, Deniz, 2019. "A discrete cross aisle design model for order-picking warehouses," European Journal of Operational Research, Elsevier, vol. 275(2), pages 411-430.
    10. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    11. Valenzuela, Christine L. & Jones, Antonia J., 1997. "Estimating the Held-Karp lower bound for the geometric TSP," European Journal of Operational Research, Elsevier, vol. 102(1), pages 157-175, October.
    12. Mohammad Nezhad, Ali & Manzour, Hasan & Salhi, Said, 2013. "Lagrangian relaxation heuristics for the uncapacitated single-source multi-product facility location problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 713-723.
    13. Anurag Agarwal, 2009. "Theoretical insights into the augmented-neural-network approach for combinatorial optimization," Annals of Operations Research, Springer, vol. 168(1), pages 101-117, April.
    14. Gábor Braun & Samuel Fiorini & Sebastian Pokutta & David Steurer, 2015. "Approximation Limits of Linear Programs (Beyond Hierarchies)," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 756-772, March.
    15. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    16. Lisa Göransson & Caroline Granfeldt & Ann-Brith Strömberg, 2021. "Management of Wind Power Variations in Electricity System Investment Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-30, June.
    17. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    18. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    19. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    20. Briskorn, Dirk & Horbach, Andrei, 2009. "A Lagrangian approach for minimum cost tournaments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 647, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:82-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.