IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i3p630-639.html
   My bibliography  Save this article

An adaptive heuristic algorithm for VLSI test vectors selection

Author

Listed:
  • Ibrahim, Walid
  • El-Sayed, Hesham
  • El-Chouemie, Amr
  • Amer, Hoda

Abstract

The increasing complexity of today's system-on-a-chip designs is putting more pressure on the already stressed design verification process. The verification plan must cover several individual cores as well as the overall chip design. Conditions to be verified are identified by the system's architects, the designers, and the verification team. Testing for these conditions is a must for the design to tape out, especially for high priority conditions. A significant bottleneck in the verification process of such designs is that not enough time is usually given to the final coverage phase, which makes computing cycles very precious. Thus, intelligent selection of test vectors that achieve the best coverage using the minimum number of computing cycles is crucial for on time tape out. This paper presents a novel heuristic algorithm for test vectors selection. The algorithm attempts to achieve the best coverage level while minimizing the required number of computing cycles.

Suggested Citation

  • Ibrahim, Walid & El-Sayed, Hesham & El-Chouemie, Amr & Amer, Hoda, 2009. "An adaptive heuristic algorithm for VLSI test vectors selection," European Journal of Operational Research, Elsevier, vol. 199(3), pages 630-639, December.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:3:p:630-639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00360-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grossman, Tal & Wool, Avishai, 1997. "Computational experience with approximation algorithms for the set covering problem," European Journal of Operational Research, Elsevier, vol. 101(1), pages 81-92, August.
    2. Egon Balas & Maria C. Carrera, 1996. "A Dynamic Subgradient-Based Branch-and-Bound Procedure for Set Covering," Operations Research, INFORMS, vol. 44(6), pages 875-890, December.
    3. Ohlsson, Mattias & Peterson, Carsten & Soderberg, Bo, 2001. "An efficient mean field approach to the set covering problem," European Journal of Operational Research, Elsevier, vol. 133(3), pages 583-595, September.
    4. U Aickelin, 2002. "An indirect genetic algorithm for set covering problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(10), pages 1118-1126, October.
    5. Haddadi, Salim, 1997. "Simple Lagrangian heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 97(1), pages 200-204, February.
    6. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    2. Yagiura, Mutsunori & Kishida, Masahiro & Ibaraki, Toshihide, 2006. "A 3-flip neighborhood local search for the set covering problem," European Journal of Operational Research, Elsevier, vol. 172(2), pages 472-499, July.
    3. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    4. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    5. Ablanedo-Rosas, José H. & Rego, César, 2010. "Surrogate constraint normalization for the set covering problem," European Journal of Operational Research, Elsevier, vol. 205(3), pages 540-551, September.
    6. Gao, Chao & Yao, Xin & Weise, Thomas & Li, Jinlong, 2015. "An efficient local search heuristic with row weighting for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 750-761.
    7. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    8. Coslovich, Luca & Pesenti, Raffaele & Ukovich, Walter, 2006. "Minimizing fleet operating costs for a container transportation company," European Journal of Operational Research, Elsevier, vol. 171(3), pages 776-786, June.
    9. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    10. Cochran, Jeffery K. & Marquez Uribe, Alberto, 2005. "A set covering formulation for agile capacity planning within supply chains," International Journal of Production Economics, Elsevier, vol. 95(2), pages 139-149, February.
    11. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    12. Chunyan Liu & Hejiao Huang & Hongwei Du & Xiaohua Jia, 2017. "Optimal RSUs placement with delay bounded message dissemination in vehicular networks," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1276-1299, May.
    13. Bautista, Joaquín & Pereira, Jordi, 2006. "Modeling the problem of locating collection areas for urban waste management. An application to the metropolitan area of Barcelona," Omega, Elsevier, vol. 34(6), pages 617-629, December.
    14. Irnich, Stefan, 2000. "A multi-depot pickup and delivery problem with a single hub and heterogeneous vehicles," European Journal of Operational Research, Elsevier, vol. 122(2), pages 310-328, April.
    15. F J Vasko & P J Knolle & D S Spiegel, 2005. "An empirical study of hybrid genetic algorithms for the set covering problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1213-1223, October.
    16. Dimitris Bertsimas & Dan A. Iancu & Dmitriy Katz, 2013. "A New Local Search Algorithm for Binary Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 208-221, May.
    17. Naji-Azimi, Zahra & Toth, Paolo & Galli, Laura, 2010. "An electromagnetism metaheuristic for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 205(2), pages 290-300, September.
    18. Alberto Caprara & Matteo Fischetti & Paolo Toth, 1999. "A Heuristic Method for the Set Covering Problem," Operations Research, INFORMS, vol. 47(5), pages 730-743, October.
    19. Rudabeh Meskarian & Marion L Penn & Sarah Williams & Thomas Monks, 2017. "A facility location model for analysis of current and future demand for sexual health services," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-18, August.
    20. Yourim Yoon & Yong-Hyuk Kim, 2020. "Gene-Similarity Normalization in a Genetic Algorithm for the Maximum k -Coverage Problem," Mathematics, MDPI, vol. 8(4), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:3:p:630-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.