IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v100y1997i3p399-412.html
   My bibliography  Save this article

The mixed and multi model line balancing problem: a comparison

Author

Listed:
  • van Zante-de Fokkert, Jannet I.
  • de Kok, Ton G.

Abstract

No abstract is available for this item.

Suggested Citation

  • van Zante-de Fokkert, Jannet I. & de Kok, Ton G., 1997. "The mixed and multi model line balancing problem: a comparison," European Journal of Operational Research, Elsevier, vol. 100(3), pages 399-412, August.
  • Handle: RePEc:eee:ejores:v:100:y:1997:i:3:p:399-412
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(96)00162-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reza H. Ahmadi & Herman Wurgaft, 1994. "Design for Synchronized Flow Manufacturing," Management Science, INFORMS, vol. 40(11), pages 1469-1483, November.
    2. Nick T. Thomopoulos, 1967. "Line Balancing-Sequencing for Mixed-Model Assembly," Management Science, INFORMS, vol. 14(2), pages 59-75, October.
    3. Berger, Ilana & Bourjolly, Jean-Marie & Laporte, Gilbert, 1992. "Branch-and-bound algorithms for the multi-product assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 58(2), pages 215-222, April.
    4. Nick T. Thomopoulos, 1970. "Mixed Model Line Balancing with Smoothed Station Assignments," Management Science, INFORMS, vol. 16(9), pages 593-603, May.
    5. Roger V. Johnson, 1983. "A Branch and Bound Algorithm for Assembly Line Balancing Problems with Formulation Irregularities," Management Science, INFORMS, vol. 29(11), pages 1309-1324, November.
    6. J. L. C. Macaskill, 1972. "Production-Line Balances for Mixed-Model Lines," Management Science, INFORMS, vol. 19(4-Part-1), pages 423-434, December.
    7. Dar-El, EM & Cucuy, S, 1977. "Optimal mixed-model sequencing for balanced assembly lines," Omega, Elsevier, vol. 5(3), pages 333-342.
    8. Steven T. Hackman & Michael J. Magazine & T. S. Wee, 1989. "Fast, Effective Algorithms for Simple Assembly Line Balancing Problems," Operations Research, INFORMS, vol. 37(6), pages 916-924, December.
    9. Amiya K. Chakravarty & Avraham Shtub, 1985. "Balancing Mixed Model Lines with In-Process Inventories," Management Science, INFORMS, vol. 31(9), pages 1161-1174, September.
    10. Reza H. Ahmadi & Sriram Dasu & Christopher S. Tang, 1992. "The Dynamic Line Allocation Problem," Management Science, INFORMS, vol. 38(9), pages 1341-1353, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    2. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    3. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    4. Abolfazl Jafari Asl & Maghsud Solimanpur & Ravi Shankar, 2019. "Multi-objective multi-model assembly line balancing problem: a quantitative study in engine manufacturing industry," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 603-627, September.
    5. Drexl, Andreas & Kimms, Alf, 1999. "Belastungsorientierte Just-in-Time Variantenfließfertigung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 502, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    7. Bukchin, Yossi & Rabinowitch, Ithai, 2006. "A branch-and-bound based solution approach for the mixed-model assembly line-balancing problem for minimizing stations and task duplication costs," European Journal of Operational Research, Elsevier, vol. 174(1), pages 492-508, October.
    8. Karabati, Selcuk & Sayin, Serpil, 2003. "Assembly line balancing in a mixed-model sequencing environment with synchronous transfers," European Journal of Operational Research, Elsevier, vol. 149(2), pages 417-429, September.
    9. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    10. Hop, Nguyen Van, 2006. "A heuristic solution for fuzzy mixed-model line balancing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 798-810, February.
    11. Kimms, Alf, 1998. "Minimal investment budgets for flow line configuration," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 470, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    2. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    3. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    4. Yavuz, Mesut & Tufekci, Suleyman, 2006. "A bounded dynamic programming solution to the batching problem in mixed-model just-in-time manufacturing systems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 841-862, October.
    5. Kim, Yeo Keun & Kim, Jae Yun & Kim, Yeongho, 2006. "An endosymbiotic evolutionary algorithm for the integration of balancing and sequencing in mixed-model U-lines," European Journal of Operational Research, Elsevier, vol. 168(3), pages 838-852, February.
    6. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    7. Karabati, Selcuk & Sayin, Serpil, 2003. "Assembly line balancing in a mixed-model sequencing environment with synchronous transfers," European Journal of Operational Research, Elsevier, vol. 149(2), pages 417-429, September.
    8. Bukchin, Joseph & Masin, Michael, 2004. "Multi-objective design of team oriented assembly systems," European Journal of Operational Research, Elsevier, vol. 156(2), pages 326-352, July.
    9. Bukchin, Yossi & Rabinowitch, Ithai, 2006. "A branch-and-bound based solution approach for the mixed-model assembly line-balancing problem for minimizing stations and task duplication costs," European Journal of Operational Research, Elsevier, vol. 174(1), pages 492-508, October.
    10. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.
    11. Roemer, Thomas A. & Ahmadi, Reza, 2010. "Models for concurrent product and process design," European Journal of Operational Research, Elsevier, vol. 203(3), pages 601-613, June.
    12. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    13. Marshall L. Fisher & Christopher D. Ittner, 1999. "The Impact of Product Variety on Automobile Assembly Operations: Empirical Evidence and Simulation Analysis," Management Science, INFORMS, vol. 45(6), pages 771-786, June.
    14. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.
    15. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    16. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    17. Fatih Ugurdag, H. & Rachamadugu, Ram & Papachristou, Christos A., 1997. "Designing paced assembly lines with fixed number of stations," European Journal of Operational Research, Elsevier, vol. 102(3), pages 488-501, November.
    18. Peeters, Marc & Degraeve, Zeger, 2006. "An linear programming based lower bound for the simple assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 716-731, February.
    19. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    20. Boysen, Nils & Fliedner, Malte, 2008. "A versatile algorithm for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 39-56, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:100:y:1997:i:3:p:399-412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.