Advanced Search
MyIDEAS: Login to save this article or follow this journal

Conditional and unconditional statistical independence

Contents:

Author Info

  • Phillips, Peter C. B.

Abstract

Conditional independence almost everywhere in the space of the conditioning variates does not imply unconditional independence, although it may well imply unconditional independence of certain functions of the variables. An example that is important in linear regression theory is discussed in detail. This involves orthogonal projections on random linear manifolds, which are conditionally independent but not unconditionally independent under normality. Necessary and sufficient conditions are obtained under which conditional independence does imply unconditional independence.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6VC0-45824GD-3/2/11fd23823c3fd52059d0f379c47a1dbf
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 38 (1988)
Issue (Month): 3 (July)
Pages: 341-348

as in new window
Handle: RePEc:eee:econom:v:38:y:1988:i:3:p:341-348

Contact details of provider:
Web page: http://www.elsevier.com/locate/jeconom

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Phillips, Peter C B, 1984. "The Exact Distribution of LIML: I," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 249-61, February.
  2. Dawid, A. P., 1985. "Invariance and independence in multivariate distribution theory," Journal of Multivariate Analysis, Elsevier, vol. 17(3), pages 304-315, December.
  3. Chib, Siddhartha & Tiwari, Ram C. & Jammalamadaka, S. Rao, 1988. "Bayes prediction in regressions with elliptical errors," Journal of Econometrics, Elsevier, vol. 38(3), pages 349-360, July.
  4. Ullah, Aman & Zinde-Walsh, Victoria, 1984. "On the Robustness of LM, LR, and W Tests in Regression Models," Econometrica, Econometric Society, vol. 52(4), pages 1055-66, July.
  5. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(01), pages 95-131, April.
  6. Hillier, Grant H., 1985. "On the Joint and Marginal Densities of Instrumental Variable Estimators in a General Structural Equation," Econometric Theory, Cambridge University Press, vol. 1(01), pages 53-72, April.
  7. Peter C.B. Phillips & Vassilis A. Hajivassiliou, 1987. "Bimodal t-Ratios," Cowles Foundation Discussion Papers 842, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Oliver Linton & Pedro Gozalo, 1996. "Conditional Independence Restrictions: Testing and Estimation," Cowles Foundation Discussion Papers 1140, Cowles Foundation for Research in Economics, Yale University.
  2. Kyungchul Song, 2007. "Testing Conditional Independence via Rosenblatt Transforms," PIER Working Paper Archive 07-026, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  3. Sokbae 'Simon' Lee & Oliver Linton & Yoon-Jae Whang, 2008. "Testing for stochastic monotonicity," CeMMAP working papers CWP21/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:38:y:1988:i:3:p:341-348. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.