IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v235y2023i2p1281-1309.html
   My bibliography  Save this article

Asymptotic F test in regressions with observations collected at high frequency over long span

Author

Listed:
  • Pellatt, Daniel F.
  • Sun, Yixiao

Abstract

This paper proposes tests of linear hypotheses when the variables may be continuous-time processes with observations collected at a high sampling frequency over a long span. Utilizing series long run variance (LRV) estimation in place of the traditional kernel LRV estimation, we develop easy-to-implement and more accurate F tests in both stationary and nonstationary environments. The nonstationary environment accommodates exogenous regressors that are general semimartingales. Endogenous regressors are allowed in a nonstationary environment similar to cointegration models in the usual discrete-time setting. The F tests can be implemented in exactly the same way as in the discrete-time setting. The F tests are, therefore, robust to the continuous-time or discrete-time nature of the data. Simulations demonstrate the improved size accuracy and competitive power of the F tests relative to existing continuous-time testing procedures and their improved versions. The F tests are of practical interest as recent work by Chang et al. (2021) demonstrates that traditional inference methods can become invalid and produce spurious results when continuous-time processes are observed on finer grids over a long span.

Suggested Citation

  • Pellatt, Daniel F. & Sun, Yixiao, 2023. "Asymptotic F test in regressions with observations collected at high frequency over long span," Journal of Econometrics, Elsevier, vol. 235(2), pages 1281-1309.
  • Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1281-1309
    DOI: 10.1016/j.jeconom.2022.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622001919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(1), pages 116-142, February.
    2. Hwang, Jungbin & Sun, Yixiao, 2018. "SIMPLE, ROBUST, AND ACCURATE F AND t TESTS IN COINTEGRATED SYSTEMS," Econometric Theory, Cambridge University Press, vol. 34(5), pages 949-984, October.
    3. Yixiao Sun, 2013. "A heteroskedasticity and autocorrelation robust F test using an orthonormal series variance estimator," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-26, February.
    4. Kim, Jihyun & Park, Joon Y., 2017. "Asymptotics for recurrent diffusions with application to high frequency regression," Journal of Econometrics, Elsevier, vol. 196(1), pages 37-54.
    5. Jin, Sainan & Phillips, Peter C.B. & Sun, Yixiao, 2006. "A new approach to robust inference in cointegration," Economics Letters, Elsevier, vol. 91(2), pages 300-306, May.
    6. Sun, Yixiao, 2011. "Robust trend inference with series variance estimator and testing-optimal smoothing parameter," Journal of Econometrics, Elsevier, vol. 164(2), pages 345-366, October.
    7. Matthew J. Kotchen & James H. Stock & Catherine D. Wolfram, 2019. "Introduction to "Environmental and Energy Policy and the Economy"," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 1, pages 3-7, National Bureau of Economic Research, Inc.
    8. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2008. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Econometrica, Econometric Society, vol. 76(1), pages 175-194, January.
    9. Vogelsang, Timothy J. & Wagner, Martin, 2014. "Integrated modified OLS estimation and fixed-b inference for cointegrating regressions," Journal of Econometrics, Elsevier, vol. 178(2), pages 741-760.
    10. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    11. Sun, Yixiao, 2004. "A CONVERGENT t-STATISTIC IN SPURIOUS REGRESSIONS," Econometric Theory, Cambridge University Press, vol. 20(5), pages 943-962, October.
    12. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    13. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 541-559, October.
    14. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    15. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice Rejoinder," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 574-575, October.
    16. Lu, Ye & Park, Joon Y., 2019. "Estimation of longrun variance of continuous time stochastic process using discrete sample," Journal of Econometrics, Elsevier, vol. 210(2), pages 236-267.
    17. Yixiao Sun, 2014. "Fixed‐Smoothing Asymptotics in a Two‐Step Generalized Method of Moments Framework," Econometrica, Econometric Society, vol. 82, pages 2327-2370, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pellatt , Daniel & Sun, Yixiao, 2020. "Asymptotic F test in Regressions with Observations Collected at High Frequency over Long Span," University of California at San Diego, Economics Working Paper Series qt19f0d9wz, Department of Economics, UC San Diego.
    2. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    3. Hwang, Jungbin & Valdés, Gonzalo, 2023. "Finite-sample corrected inference for two-step GMM in time series," Journal of Econometrics, Elsevier, vol. 234(1), pages 327-352.
    4. Jungbin Hwang & Gonzalo Valdés, 2020. "Low Frequency Cointegrating Regression in the Presence of Local to Unity Regressors and Unknown Form of Serial Dependence," Working papers 2020-03, University of Connecticut, Department of Economics, revised Aug 2020.
    5. Hwang, Jungbin & Sun, Yixiao, 2018. "SIMPLE, ROBUST, AND ACCURATE F AND t TESTS IN COINTEGRATED SYSTEMS," Econometric Theory, Cambridge University Press, vol. 34(5), pages 949-984, October.
    6. Martínez-Iriarte, Julián & Sun, Yixiao & Wang, Xuexin, 2020. "Asymptotic F tests under possibly weak identification," Journal of Econometrics, Elsevier, vol. 218(1), pages 140-177.
    7. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    8. Eben Lazarus & Daniel J. Lewis & James H. Stock, 2021. "The Size‐Power Tradeoff in HAR Inference," Econometrica, Econometric Society, vol. 89(5), pages 2497-2516, September.
    9. Yixiao Sun & Xuexin Wang, 2019. "An Asymptotically F-Distributed Chow Test in the Presence of Heteroscedasticity and Autocorrelation," Papers 1911.03771, arXiv.org.
    10. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    11. Rho, Seunghwa & Vogelsang, Timothy J., 2021. "Inference in time series models using smoothed-clustered standard errors," Journal of Econometrics, Elsevier, vol. 224(1), pages 113-133.
    12. Laura Coroneo & Fabrizio Iacone, 2020. "Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 391-409, June.
    13. Jungbin Hwang & Gonzalo Valdés, 2020. "Finite-sample Corrected Inference for Two-step GMM in Time Series," Working papers 2020-02, University of Connecticut, Department of Economics.
    14. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Journal of Econometrics, Elsevier, vol. 223(1), pages 125-160.
    15. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    16. Xuexin Wang & Yixiao Sun, 2020. "An Asymptotic F Test for Uncorrelatedness in the Presence of Time Series Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 536-550, July.
    17. Liu, Cheng & Sun, Yixiao, 2019. "A simple and trustworthy asymptotic t test in difference-in-differences regressions," Journal of Econometrics, Elsevier, vol. 210(2), pages 327-362.
    18. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    19. Xiaoqing Ye & Yixiao Sun, 2018. "Heteroskedasticity- and autocorrelation-robust F and t tests in Stata," Stata Journal, StataCorp LP, vol. 18(4), pages 951-980, December.
    20. Sun, Yixiao & Yang, Jingjing, 2020. "Testing-optimal kernel choice in HAR inference," Journal of Econometrics, Elsevier, vol. 219(1), pages 123-136.

    More about this item

    Keywords

    Continuous time model; F distribution; High-frequency regression; Long run variance estimation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1281-1309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.