Advanced Search
MyIDEAS: Login to save this article or follow this journal

Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE


Author Info

  • Francq, Christian
  • Lepage, Guillaume
  • Zakoïan, Jean-Michel


In generalized autoregressive conditional heteroskedastic (GARCH) models, the standard identifiability assumption that the variance of the iid process is equal to 1 can be replaced by an alternative moment assumption. We show that, for estimating the original specification based on the standard identifiability assumption, efficiency gains can be expected from using a quasi-maximum likelihood (QML) estimator based on a non Gaussian density and a reparameterization based on an alternative identifiability assumption. A test allowing to determine whether a reparameterization is needed, that is, whether the more efficient QMLE is obtained with a non Gaussian density, is proposed.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 165 (2011)
Issue (Month): 2 ()
Pages: 246-257

as in new window
Handle: RePEc:eee:econom:v:165:y:2011:i:2:p:246-257

Contact details of provider:
Web page:

Related research

Keywords: Conditional heteroskedasticity; Efficiency of estimators; Quasi maximum likelihood estimation;

Find related papers by JEL classification:


No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ke. Zhu, 2013. "A mixed portmanteau test for ARMA-GARCH models by the quasi-maximum exponential likelihood estimation approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(2), pages 230-237, 03.
  2. Christan Francq & Jean-Michel Zakoian, 2012. "Optimal Predictions of Powers of Conditionally Heteroskedastic Processes," Working Papers 2012-17, Centre de Recherche en Economie et Statistique.
  3. El Ghourabi, Mohamed & Francq, Christian & Telmoudi, Fedya, 2013. "Consistent estimation of the Value-at-Risk when the error distribution of the volatility model is misspecified," MPRA Paper 51150, University Library of Munich, Germany.
  4. Francq, Christian & Zakoian, Jean-Michel, 2012. "Risk-parameter estimation in volatility models," MPRA Paper 41713, University Library of Munich, Germany.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:165:y:2011:i:2:p:246-257. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.