IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v473y2022ics0304380022002137.html
   My bibliography  Save this article

Selecting age structure in integrated population models

Author

Listed:
  • Besbeas, P.T.
  • McCrea, R.S.
  • Morgan, B.J.T.

Abstract

Integrated population modelling is widely used in ecology when data at the individual level are combined with independent time series measuring population abundance. However there is no formal assessment of how to select the best integrated model. Here we focus on the important case of determining the age-structure for annual survival probabilities of wild animals, involving comparing state–space models with different numbers of states. The work is motivated by real data sets, and evaluated by simulation. We reject the naïve use of AIC, and advocate the use of likelihood-ratio tests, based on combined data. We demonstrate using simulation that typical asymptotic chi-square distributions of likelihood-ratio test statistics to compare integrated models apply when the corresponding state–space models have the same state variables. In addition, for linear state–space models with matching initial conditions the correct chi-square distributions may also hold when models apparently have different state–spaces. The results for comparing integrated models also have relevance for state–space modelling alone. A senescence case study is provided which incorporates a step-up approach and illustrates the use of the recommendations of the paper in practice.

Suggested Citation

  • Besbeas, P.T. & McCrea, R.S. & Morgan, B.J.T., 2022. "Selecting age structure in integrated population models," Ecological Modelling, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002137
    DOI: 10.1016/j.ecolmodel.2022.110111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022002137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Besbeas & B.J.T. Morgan, 2019. "Exact inference for integrated population modelling," Biometrics, The International Biometric Society, vol. 75(2), pages 475-484, June.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    3. Ruth King & Stephen P. Brooks & Chiara Mazzetta & Stephen N. Freeman & Byron J. T. Morgan, 2008. "Identifying and diagnosing population declines: a Bayesian assessment of lapwings in the UK," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(5), pages 609-632, December.
    4. E. A. Catchpole & B. J. T. Morgan & T. N. Coulson & S. N. Freeman & S. D. Albon, 2000. "Factors influencing Soay sheep survival," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(4), pages 453-472.
    5. Morgan, B.J.T. & Palmer, K.J. & Ridout, M.S., 2007. "Negative Score Test Statistic," The American Statistician, American Statistical Association, vol. 61, pages 285-288, November.
    6. Panagiotis Besbeas & Byron J. T. Morgan, 2017. "Variance estimation for integrated population models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 439-460, October.
    7. P. Besbeas & J.‐D. Lebreton & B. J. T. Morgan, 2003. "The efficient integration of abundance and demographic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 95-102, January.
    8. P. Besbeas & S. N. Freeman & B. J. T. Morgan & E. A. Catchpole, 2002. "Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters," Biometrics, The International Biometric Society, vol. 58(3), pages 540-547, September.
    9. Bengtsson, Thomas & Cavanaugh, Joseph E., 2006. "An improved Akaike information criterion for state-space model selection," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2635-2654, June.
    10. Rachel S. McCrea & Byron J. T. Morgan, 2011. "Multistate Mark–Recapture Model Selection Using Score Tests," Biometrics, The International Biometric Society, vol. 67(1), pages 234-241, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Besbeas & Byron J. T. Morgan, 2017. "Variance estimation for integrated population models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 439-460, October.
    2. Dennis, Emily B. & Kéry, Marc & Morgan, Byron J.T. & Coray, Armin & Schaub, Michael & Baur, Bruno, 2021. "Integrated modelling of insect population dynamics at two temporal scales," Ecological Modelling, Elsevier, vol. 441(C).
    3. Nichols, J.M. & Spendelow, J.A. & Nichols, J.D., 2017. "Using Optimal Transport Theory to Estimate Transition Probabilities in Metapopulation Dynamics," Ecological Modelling, Elsevier, vol. 359(C), pages 311-319.
    4. Blanca Sarzo & Ruth King & David Conesa & Jonas Hentati-Sundberg, 2021. "Correcting Bias in Survival Probabilities for Partially Monitored Populations via Integrated Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 200-219, June.
    5. Simone Tenan & Paolo Pedrini & Natalia Bragalanti & Claudio Groff & Chris Sutherland, 2017. "Data integration for inference about spatial processes: A model-based approach to test and account for data inconsistency," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-18, October.
    6. Mosnier, A. & Doniol-Valcroze, T. & Gosselin, J.-F. & Lesage, V. & Measures, L.N. & Hammill, M.O., 2015. "Insights into processes of population decline using an integrated population model: The case of the St. Lawrence Estuary beluga (Delphinapterus leucas)," Ecological Modelling, Elsevier, vol. 314(C), pages 15-31.
    7. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    8. Devin S. Johnson & Brian M. Brost & Mevin B. Hooten, 2022. "Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 382-400, June.
    9. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    10. Byron J. T. Morgan, 2022. "M. Schaub and M. Kéry: Integrated Population Models Theory and Ecological Applications with R and JAGS, Academic Press, 2022," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 595-597, December.
    11. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    12. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    13. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    14. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    15. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    16. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    17. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    18. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    19. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    20. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    21. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.