IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v416y2020ics0304380019303783.html
   My bibliography  Save this article

Available and missing data to model impact of climate change on European forests

Author

Listed:
  • Ruiz-Benito, Paloma
  • Vacchiano, Giorgio
  • Lines, Emily R.
  • Reyer, Christopher P.O.
  • Ratcliffe, Sophia
  • Morin, Xavier
  • Hartig, Florian
  • Mäkelä, Annikki
  • Yousefpour, Rasoul
  • Chaves, Jimena E.
  • Palacios-Orueta, Alicia
  • Benito-Garzón, Marta
  • Morales-Molino, Cesar
  • Camarero, J. Julio
  • Jump, Alistair S.
  • Kattge, Jens
  • Lehtonen, Aleksi
  • Ibrom, Andreas
  • Owen, Harry J.F.
  • Zavala, Miguel A.

Abstract

Climate change is expected to cause major changes in forest ecosystems during the 21st century and beyond. To assess forest impacts from climate change, the existing empirical information must be structured, harmonised and assimilated into a form suitable to develop and test state-of-the-art forest and ecosystem models. The combination of empirical data collected at large spatial and long temporal scales with suitable modelling approaches is key to understand forest dynamics under climate change. To facilitate data and model integration, we identified major climate change impacts observed on European forest functioning and summarised the data available for monitoring and predicting such impacts. Our analysis of c. 120 forest-related databases (including information from remote sensing, vegetation inventories, dendroecology, palaeoecology, eddy-flux sites, common garden experiments and genetic techniques) and 50 databases of environmental drivers highlights a substantial degree of data availability and accessibility. However, some critical variables relevant to predicting European forest responses to climate change are only available at relatively short time frames (up to 10-20 years), including intra-specific trait variability, defoliation patterns, tree mortality and recruitment. Moreover, we identified data gaps or lack of data integration particularly in variables related to local adaptation and phenotypic plasticity, dispersal capabilities and physiological responses. Overall, we conclude that forest data availability across Europe is improving, but further efforts are needed to integrate, harmonise and interpret this data (i.e. making data useable for non-experts). Continuation of existing monitoring and networks schemes together with the establishments of new networks to address data gaps is crucial to rigorously predict climate change impacts on European forests.

Suggested Citation

  • Ruiz-Benito, Paloma & Vacchiano, Giorgio & Lines, Emily R. & Reyer, Christopher P.O. & Ratcliffe, Sophia & Morin, Xavier & Hartig, Florian & Mäkelä, Annikki & Yousefpour, Rasoul & Chaves, Jimena E. & , 2020. "Available and missing data to model impact of climate change on European forests," Ecological Modelling, Elsevier, vol. 416(C).
  • Handle: RePEc:eee:ecomod:v:416:y:2020:i:c:s0304380019303783
    DOI: 10.1016/j.ecolmodel.2019.108870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019303783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    2. Trevor F. Keenan & Josh Gray & Mark A. Friedl & Michael Toomey & Gil Bohrer & David Y. Hollinger & J. William Munger & John O’Keefe & Hans Peter Schmid & Ian Sue Wing & Bai Yang & Andrew D. Richardson, 2014. "Net carbon uptake has increased through warming-induced changes in temperate forest phenology," Nature Climate Change, Nature, vol. 4(7), pages 598-604, July.
    3. Davide Ascoli & Giorgio Vacchiano & Marco Turco & Marco Conedera & Igor Drobyshev & Janet Maringer & Renzo Motta & Andrew Hacket-Pain, 2017. "Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    4. Rupert Seidl & Mart-Jan Schelhaas & Werner Rammer & Pieter Johannes Verkerk, 2014. "Increasing forest disturbances in Europe and their impact on carbon storage," Nature Climate Change, Nature, vol. 4(9), pages 806-810, September.
    5. Victoria Stodden & Jennifer Seiler & Zhaokun Ma, 2018. "An empirical analysis of journal policy effectiveness for computational reproducibility," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(11), pages 2584-2589, March.
    6. Yi Y. Liu & Albert I. J. M. van Dijk & Richard A. M. de Jeu & Josep G. Canadell & Matthew F. McCabe & Jason P. Evans & Guojie Wang, 2015. "Recent reversal in loss of global terrestrial biomass," Nature Climate Change, Nature, vol. 5(5), pages 470-474, May.
    7. Trevor F. Keenan & David Y. Hollinger & Gil Bohrer & Danilo Dragoni & J. William Munger & Hans Peter Schmid & Andrew D. Richardson, 2013. "Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise," Nature, Nature, vol. 499(7458), pages 324-327, July.
    8. Virginia Gewin, 2016. "Data sharing: An open mind on open data," Nature, Nature, vol. 529(7584), pages 117-119, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mostafa A. Ali & Nazimah Hussin & Hossam Haddad & Nidal Mahmoud Al-Ramahi & Tareq Hammad Almubaydeen & Ibtihal A. Abed, 2022. "The Impact of Intellectual Capital on Dynamic Innovation Performance: An Overview of Research Methodology," JRFM, MDPI, vol. 15(10), pages 1-28, October.
    2. Changjun Gu & Pei Zhao & Qiong Chen & Shicheng Li & Lanhui Li & Linshan Liu & Yili Zhang, 2020. "Forest Cover Change and the Effectiveness of Protected Areas in the Himalaya since 1998," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    3. Hoang, Anh Tuan & Sandro Nižetić, & Olcer, Aykut I. & Ong, Hwai Chyuan & Chen, Wei-Hsin & Chong, Cheng Tung & Thomas, Sabu & Bandh, Suhaib A. & Nguyen, Xuan Phuong, 2021. "Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications," Energy Policy, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simioni, Guillaume & Marie, Guillaume & Davi, Hendrik & Martin-St Paul, Nicolas & Huc, Roland, 2020. "Natural forest dynamics have more influence than climate change on the net ecosystem production of a mixed Mediterranean forest," Ecological Modelling, Elsevier, vol. 416(C).
    2. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    4. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    5. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    6. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    7. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    8. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    9. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    10. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    11. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    12. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    13. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    14. Li, Sien & Kang, Shaozhong & Zhang, Lu & Du, Taisheng & Tong, Ling & Ding, Risheng & Guo, Weihua & Zhao, Peng & Chen, Xia & Xiao, Huan, 2015. "Ecosystem water use efficiency for a sparse vineyard in arid northwest China," Agricultural Water Management, Elsevier, vol. 148(C), pages 24-33.
    15. Monika Winn & Manfred Kirchgeorg & Andrew Griffiths & Martina K. Linnenluecke & Elmar Günther, 2011. "Impacts from climate change on organizations: a conceptual foundation," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 157-173, March.
    16. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    18. Shana M. Sundstrom & Craig R. Allen & David G. Angeler, 2020. "Scaling and discontinuities in the global economy," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 319-345, April.
    19. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    20. Tie Zhang & Guijie Ding & Jiangping Zhang & Yujiao Qi, 2022. "Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province," Sustainability, MDPI, vol. 14(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:416:y:2020:i:c:s0304380019303783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.