IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v231y2012icp126-133.html
   My bibliography  Save this article

Predicting micro thermal habitat of lizards in a dynamic thermal environment

Author

Listed:
  • Fei, Teng
  • Skidmore, Andrew K.
  • Venus, Valentijn
  • Wang, Tiejun
  • Toxopeus, Bert
  • Bian, Meng
  • Liu, Yaolin

Abstract

Understanding behavioural thermoregulation and its consequences is a central topic in ecology. In this study, a spatial explicit model was developed to simulate the movement and thermal habitat use of lizards in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton (CA) algorithm and links the physiology knowledge of the animal with the spatial utilization of its microhabitat. The model assumed that a lizard tries to maintain its preferred body temperature in a dynamic thermal environment by continuously selecting positions with different thermal conditions. The sequence of chosen positions formed a chain defining the individual's path, to be later aggregated into a map of thermal habitat use. An experiment was designed to test the model. An ocellated lizard (Timon lepidus) was kept in a terrarium with controlled dynamic thermal environment, and the thermal environment as well as the movement of the lizard were recorded by a variety of sensors. The model was tested to predict the spatial utilization of a lizard's thermal habitat in the terrarium based on three categories: high, moderate and low occupancy. The simulated results were compared with observations from the animal experiment. The predicted overall pattern of the micro-habitat occupancy of the lizard within 4 days matched the observation, at an overall accuracy of 75.7%. The results suggest that thermal habitat use by lizards in a controlled environment may be predicted by the integrated model of the lizard's body temperature and the CA algorithm.

Suggested Citation

  • Fei, Teng & Skidmore, Andrew K. & Venus, Valentijn & Wang, Tiejun & Toxopeus, Bert & Bian, Meng & Liu, Yaolin, 2012. "Predicting micro thermal habitat of lizards in a dynamic thermal environment," Ecological Modelling, Elsevier, vol. 231(C), pages 126-133.
  • Handle: RePEc:eee:ecomod:v:231:y:2012:i:c:p:126-133
    DOI: 10.1016/j.ecolmodel.2012.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012000804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ford, R. Glenn & Ainley, David G. & Brown, Evelyn D. & Suryan, Robert M. & Irons, David B., 2007. "A spatially explicit optimal foraging model of Black-legged Kittiwake behavior based on prey density, travel distances, and colony size," Ecological Modelling, Elsevier, vol. 204(3), pages 335-348.
    2. Liu, Hanwu & Zhou, Li, 2007. "Modeling dispersal of the plateau pika (Ochotona curzoniae) using a cellular automata model," Ecological Modelling, Elsevier, vol. 202(3), pages 487-492.
    3. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    2. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    3. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    4. Chan, Nathan & Wichman, Casey, 2017. "The Effects of Climate on Leisure Demand: Evidence from North America," RFF Working Paper Series 17-20, Resources for the Future.
    5. Richter, Andries & Grasman, Johan, 2013. "The transmission of sustainable harvesting norms when agents are conditionally cooperative," Ecological Economics, Elsevier, vol. 93(C), pages 202-209.
    6. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    7. Andrew J Allyn & Michael A Alexander & Bradley S Franklin & Felix Massiot-Granier & Andrew J Pershing & James D Scott & Katherine E Mills, 2020. "Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-28, April.
    8. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
    9. Ernesto Azzurro & Paula Moschella & Francesc Maynou, 2011. "Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    10. Ralf C Buckley & J Guy Castley & Fernanda de Vasconcellos Pegas & Alexa C Mossaz & Rochelle Steven, 2012. "A Population Accounting Approach to Assess Tourism Contributions to Conservation of IUCN-Redlisted Mammal Species," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-8, September.
    11. Aagaard, Kevin J. & Thogmartin, Wayne E. & Lonsdorf, Eric V., 2018. "Temperature-influenced energetics model for migrating waterfowl," Ecological Modelling, Elsevier, vol. 378(C), pages 46-58.
    12. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    13. Hu, Saiquan & Jia, Xiao & Zhang, Xiaojin & Zheng, Xiaoying & Zhu, Junming, 2017. "How political ideology affects climate perception: Moderation effects of time orientation and knowledge," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 124-131.
    14. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    15. Edward Kato & Claudia Ringler & Mahmud Yesuf & Elizabeth Bryan, 2011. "Soil and water conservation technologies: a buffer against production risk in the face of climate change? Insights from the Nile basin in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 593-604, September.
    16. Lazarus Chapungu & Luxon Nhamo & Roberto Cazzolla Gatti & Munyaradzi Chitakira, 2020. "Quantifying Changes in Plant Species Diversity in a Savanna Ecosystem Through Observed and Remotely Sensed Data," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    17. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    18. Ding, Helen & Nunes, Paulo A.L.D., 2014. "Modeling the links between biodiversity, ecosystem services and human wellbeing in the context of climate change: Results from an econometric analysis of the European forest ecosystems," Ecological Economics, Elsevier, vol. 97(C), pages 60-73.
    19. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    20. Garrath T. Wilson & Tracy Bhamra, 2020. "Design for Sustainability: The Need for a New Agenda," Sustainability, MDPI, vol. 12(9), pages 1-8, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:231:y:2012:i:c:p:126-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.