IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i20p3743-3760.html
   My bibliography  Save this article

Analysis of nitrogen controls on carbon and water exchanges in a conifer forest using the CLASS-CTEMN+ model

Author

Listed:
  • Huang, Suo
  • Arain, M. Altaf
  • Arora, Vivek K.
  • Yuan, Fengming
  • Brodeur, Jason
  • Peichl, Matthias

Abstract

A carbon (C) and nitrogen (N) cycle-coupled model, CLASS-CTEMN+ was developed by incorporating soil and plant N cycling algorithms in the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM), used in the Canadian Global Climate Model. Key soil and plant N cycling processes incorporated in the model include biological fixation, mineralization, nitrification, denitrification, leaching and N controls on plant photosynthesis capacity. The model was used to analyse N controls on C and water exchanges in a 70-year-old temperate conifer forest in southern Ontario, Canada from 2003 to 2007. The simulated values of soil–plant N contents and fluxes – including N2O flux – were generally in good agreement with observations. When N controls on C and water cycling were included in the model, simulated daily gross ecosystem productivity (GEP), ecosystem respiration (Re), net ecosystem productivity (NEP) and evapotranspiration (ET) fluxes showed improved agreement with eddy covariance flux measurements. The five-year mean annual NEP predicted by the N-coupled model was 121gCm−2yr− for 2003–2007, compared to 273gCm−2yr−1, which was simulated by the model when N controls were switched off (non-N model). N-coupled model estimates compared well with the measured five-year mean (± standard deviation) annual NEP of 136±59gCm−2yr−1. Simulated annual mean ET over five-years was 384mmyr−1 for the N-coupled model, and 433mmyr−1 for non-N model, compared with the measured five-year mean annual value of 405±44mmyr−1. Model results confirmed that a proper representation of N controls on photosynthetic uptake and canopy conductance could result in more plausible simulations of observed C and water fluxes. The model results also suggested that N limitations in spring and early summer were generally more important in controlling NEP. Discrepancies between simulated and measured annual variations of C exchanges occurred in years that included extreme weather periods (e.g. low soil water content and warm spring/summer temperatures).

Suggested Citation

  • Huang, Suo & Arain, M. Altaf & Arora, Vivek K. & Yuan, Fengming & Brodeur, Jason & Peichl, Matthias, 2011. "Analysis of nitrogen controls on carbon and water exchanges in a conifer forest using the CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 222(20), pages 3743-3760.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:20:p:3743-3760
    DOI: 10.1016/j.ecolmodel.2011.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011004686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6809), pages 184-187, November.
    2. Peter Högberg & Anders Nordgren & Nina Buchmann & Andrew F. S. Taylor & Alf Ekblad & Mona N. Högberg & Gert Nyberg & Mikaell Ottosson-Löfvenius & David J. Read, 2001. "Large-scale forest girdling shows that current photosynthesis drives soil respiration," Nature, Nature, vol. 411(6839), pages 789-792, June.
    3. Knute J. Nadelhoffer & Bridget A. Emmett & Per Gundersen & Chris J. Koopmans & Patrick Schleppi & Albert Tietema & Richard F. Wright, 1999. "Nitrogen deposition and carbon sequestration," Nature, Nature, vol. 400(6745), pages 630-630, August.
    4. Yuan, Fengming & Arain, M. Altaf & Black, T. Andrew & Morgenstern, Kai, 2007. "Energy and water exchanges modulated by soil–plant nitrogen cycling in a temperate Pacific Northwest conifer forest," Ecological Modelling, Elsevier, vol. 201(3), pages 331-347.
    5. Knute J. Nadelhoffer & Bridget A. Emmett & Per Gundersen & O. Janne Kjønaas & Chris J. Koopmans & Patrick Schleppi & Albert Tietema & Richard F. Wright, 1999. "Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests," Nature, Nature, vol. 398(6723), pages 145-148, March.
    6. Martin Heimann & Markus Reichstein, 2008. "Terrestrial ecosystem carbon dynamics and climate feedbacks," Nature, Nature, vol. 451(7176), pages 289-292, January.
    7. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    8. Sharon A. Billings, 2008. "Nitrous oxide in flux," Nature, Nature, vol. 456(7224), pages 888-889, December.
    9. Peter M. Cox & Richard A. Betts & Chris D. Jones & Steven A. Spall & Ian J. Totterdell, 2000. "Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, Nature, vol. 408(6813), pages 750-750, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    2. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "Assessing nitrogen controls on carbon, water and energy exchanges in major plant functional types across North America using a carbon and nitrogen coupled ecosystem model," Ecological Modelling, Elsevier, vol. 323(C), pages 12-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    2. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "Assessing nitrogen controls on carbon, water and energy exchanges in major plant functional types across North America using a carbon and nitrogen coupled ecosystem model," Ecological Modelling, Elsevier, vol. 323(C), pages 12-27.
    3. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.
    4. Miao Yu & Guiling Wang & Dana Parr & Kazi Ahmed, 2014. "Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs," Climatic Change, Springer, vol. 127(2), pages 257-271, November.
    5. Eliseev, Alexey V. & Mokhov, Igor I., 2008. "Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model," Ecological Modelling, Elsevier, vol. 213(1), pages 127-132.
    6. Brovkin, Victor & Cherkinsky, Alexander & Goryachkin, Sergey, 2008. "Estimating soil carbon turnover using radiocarbon data: A case-study for European Russia," Ecological Modelling, Elsevier, vol. 216(2), pages 178-187.
    7. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    8. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    9. Ouardighi, Fouad El & Sim, Jeong Eun & Kim, Bowon, 2016. "Pollution accumulation and abatement policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 248(3), pages 982-996.
    10. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    11. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    12. U. Persson & Christian Azar, 2007. "Tropical deforestation in a future international climate policy regime—lessons from the Brazilian Amazon," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(7), pages 1277-1304, August.
    13. Wang, Weilong & Xiao, Jing & Wei, Xiaolan & Ding, Jing & Wang, Xiaoxing & Song, Chunshan, 2014. "Development of a new clay supported polyethylenimine composite for CO2 capture," Applied Energy, Elsevier, vol. 113(C), pages 334-341.
    14. Arce, G.L.A.F. & Carvalho, J.A. & Nascimento, L.F.C., 2014. "A time series sequestration and storage model of atmospheric carbon dioxide," Ecological Modelling, Elsevier, vol. 272(C), pages 59-67.
    15. repec:hal:spmain:info:hdl:2441/5vt1fet9fq9o5pkgj2qh2vn1cm is not listed on IDEAS
    16. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    17. Fouad El Ouardighi & Hassan Benchekroun & Dieter Grass, 2016. "Self-regenerating environmental absorption efficiency and the $$\varvec{ soylent~green~scenario}$$ s o y l e n t g r e e n s c e n a r i o," Annals of Operations Research, Springer, vol. 238(1), pages 179-198, March.
    18. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    19. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    20. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    21. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:20:p:3743-3760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.