IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v195y2022ics0921800922000246.html
   My bibliography  Save this article

Utilization potential of alien plants in nature-based tourism sites: A case study on Agave americana (century plant) in the Ogasawara Islands

Author

Listed:
  • Onozuka, Mizuki
  • Osawa, Takeshi

Abstract

Introduction of alien species is a severe problem in nature-based tourism sites, particularly in islands. However, majority of alien species does not show severe invasive characteristics. Many alien species originate from ornamental species preferred by the general public. Therefore, using these alien species that do not exhibit high invasiveness as tourism resources may be practical in nature-based tourism sites. We evaluated invasiveness using Species Distribution Models and attractiveness for visitors using questionnaire surveys on Agave americana, an alien plant with high ornamental value in Chichijima, Ogasawara Islands, Japan. The Ogasawara Islands are oceanic islands with important tourism value that are also vulnerable to alien invasive species. Our results showed A. americana was distributed in relatively low conservation value where many visitors enjoyed tourist landscape pictures with the species. Therefore, A. americana showed relatively low invasiveness and was preferred by visitors, which are ideal conditions for their use as tourism resources. However, visitor preference of plant species was strongly influenced by their perceptions. Visitors did not prefer alien invasive species, but also could not identify which plant species were alien invasive. When using alien species as a tourism resource, supporting identification of problematic invasive species is required.

Suggested Citation

  • Onozuka, Mizuki & Osawa, Takeshi, 2022. "Utilization potential of alien plants in nature-based tourism sites: A case study on Agave americana (century plant) in the Ogasawara Islands," Ecological Economics, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:ecolec:v:195:y:2022:i:c:s0921800922000246
    DOI: 10.1016/j.ecolecon.2022.107362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800922000246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2022.107362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viteri Mejía, César & Brandt, Sylvia, 2015. "Managing tourism in the Galapagos Islands through price incentives: A choice experiment approach," Ecological Economics, Elsevier, vol. 117(C), pages 1-11.
    2. Pimentel, David & Zuniga, Rodolfo & Morrison, Doug, 2005. "Update on the environmental and economic costs associated with alien-invasive species in the United States," Ecological Economics, Elsevier, vol. 52(3), pages 273-288, February.
    3. Rochelle Steven & J Guy Castley & Ralf Buckley, 2013. "Tourism Revenue as a Conservation Tool for Threatened Birds in Protected Areas," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han-Shen Chen, 2020. "The Construction and Validation of a Sustainable Tourism Development Evaluation Model," IJERPH, MDPI, vol. 17(19), pages 1-20, October.
    2. Han-Shen Chen & Chu-Wei Chen, 2019. "Economic Valuation of Green Island, Taiwan: A Choice Experiment Method," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
    3. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    4. Travis Warziniack & David Finnoff & Jonathan Bossenbroek & Jason Shogren & David Lodge, 2011. "Stepping Stones for Biological Invasion: A Bioeconomic Model of Transferable Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(4), pages 605-627, December.
    5. Blackwood, Julie & Hastings, Alan & Costello, Christopher, 2010. "Cost-effective management of invasive species using linear-quadratic control," Ecological Economics, Elsevier, vol. 69(3), pages 519-527, January.
    6. Cook, David & Proctor, Wendy, 2007. "Assessing the threat of exotic plant pests," Ecological Economics, Elsevier, vol. 63(2-3), pages 594-604, August.
    7. Mirko Di Febbraro & Peter W W Lurz & Piero Genovesi & Luigi Maiorano & Marco Girardello & Sandro Bertolino, 2013. "The Use of Climatic Niches in Screening Procedures for Introduced Species to Evaluate Risk of Spread: A Case with the American Eastern Grey Squirrel," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    8. Colvin, Michael E. & Pierce, Clay L. & Stewart, Timothy W., 2015. "A food web modeling analysis of a Midwestern, USA eutrophic lake dominated by non-native Common Carp and Zebra Mussels," Ecological Modelling, Elsevier, vol. 312(C), pages 26-40.
    9. Matthew Oliver Ralp Dimal & Victor Jetten, 2020. "Analyzing preference heterogeneity for soil amenity improvements using discrete choice experiment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1323-1351, February.
    10. Beça, Pedro & Santos, Rui, 2010. "Measuring sustainable welfare: A new approach to the ISEW," Ecological Economics, Elsevier, vol. 69(4), pages 810-819, February.
    11. Don Driscoll & Adam Felton & Philip Gibbons & Annika Felton & Nicola Munro & David Lindenmayer, 2012. "Priorities in policy and management when existing biodiversity stressors interact with climate-change," Climatic Change, Springer, vol. 111(3), pages 533-557, April.
    12. Liu, Yanxu & Sims, Charles, 2016. "Spatial-dynamic externalities and coordination in invasive species control," Resource and Energy Economics, Elsevier, vol. 44(C), pages 23-38.
    13. Jones, Kristin Roti & Corona, Joel P., 2008. "An ambient tax approach to invasive species," Ecological Economics, Elsevier, vol. 64(3), pages 534-541, January.
    14. Jamie M. Chen & Junzhou Zhang & Peter Nijkamp, 2016. "A regional analysis of willingness-to-pay in Asian cruise markets," Tourism Economics, , vol. 22(4), pages 809-824, August.
    15. Sinden, John Alfred & Griffith, Garry, 2007. "Combining economic and ecological arguments to value the environmental gains from control of 35 weeds in Australia," Ecological Economics, Elsevier, vol. 61(2-3), pages 396-408, March.
    16. Gabriele Soriano & Mónica Fernández-Aparicio & Marco Masi & Susana Vilariño-Rodríguez & Alessio Cimmino, 2022. "Complex Mixture of Arvensic Acids Isolated from Convolvulus arvensis Roots Identified as Inhibitors of Radicle Growth of Broomrape Weeds," Agriculture, MDPI, vol. 12(5), pages 1-10, April.
    17. Zapata, Samuel D. & Dudensing, Rebekka & Sekula, Danielle & Esparza-Dã Az, Gabriela & Villanueva, Raul, 2018. "Economic Impact Of The Sugarcane Aphid Outbreak In South Texas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 50(1), pages 104-128, February.
    18. Hlasny, Vladimir & Livingston, Michael J., 2008. "Economic Determinants of Invasion and Discovery of Nonindigenous Insects," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 37-52, April.
    19. Giaccaria Sergio & Dalmazzone Silvana, 2010. "Socio-economic drivers of biological invasions. A worldwide, bio-geographical analysis of trade flows and local environmental quality," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201003, University of Turin.
    20. Parshad, Rana D. & Wickramsooriya, Sureni & Bailey, Susan, 2020. "A remark on “Biological control through provision of additional food to predators: A theoretical study†[Theor. Popul. Biol. 72 (2007) 111–120]," Theoretical Population Biology, Elsevier, vol. 132(C), pages 60-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:195:y:2022:i:c:s0921800922000246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.