IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v143y2018icp210-217.html
   My bibliography  Save this article

Evaluating the Economic Potential of Uneven-aged Maritime Pine Forests

Author

Listed:
  • Rosa, Renato
  • Soares, Paula
  • Tomé, Margarida

Abstract

Continuous cover practices are likely to better respond to the increasing demand for social, aesthetic and environmental values provided by forest ecosystems than even-aged forest plantations. Also, uneven-aged forestry may be especially attractive for non-industrial private forest owners, as it provides more regular revenues and, by taking advantage of natural regeneration, reduce installation costs. Knowledge on alternative regimes to even-aged forestry is therefore in high demand. We first add to the literature by proposing a new maritime pine forest growth model that can be readily used in optimization studies. Second, we are the first to analyze optimal uneven aged forest management for this species. Highlighting the contribution of this study, a comparison of our results with currently suggested silvicultural management scenarios is provided. We show that the economic profitability of this species significantly increases under optimal forest management and may thus present a viable alternative to rotation forests. In particular, we show that optimal forest management may entail harvesting cycles.

Suggested Citation

  • Rosa, Renato & Soares, Paula & Tomé, Margarida, 2018. "Evaluating the Economic Potential of Uneven-aged Maritime Pine Forests," Ecological Economics, Elsevier, vol. 143(C), pages 210-217.
  • Handle: RePEc:eee:ecolec:v:143:y:2018:i:c:p:210-217
    DOI: 10.1016/j.ecolecon.2017.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800916314008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2017.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Ferreira & M. Constantino & J. Borges, 2014. "A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal," Annals of Operations Research, Springer, vol. 219(1), pages 359-377, August.
    2. Olli Tahvonen, 2015. "Economics of Naturally Regenerating, Heterogeneous Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 309-337.
    3. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    4. Orois, Sofia Sanchez & Chang, Sun Joseph & Gadow, Klaus von, 2004. "Optimal residual growing stock and cutting cycle in mixed uneven-aged maritime pine stands in Northwestern Spain," Forest Policy and Economics, Elsevier, vol. 6(2), pages 145-152, March.
    5. Petucco, Claudio & Abildtrup, Jens & Stenger, Anne, 2015. "Influences of nonindustrial private forest landowners’ management priorities on the timber harvest decision—A case study in France," Journal of Forest Economics, Elsevier, vol. 21(3), pages 152-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petri P. Kärenlampi, 2018. "Stationary Forestry with Human Interference," Sustainability, MDPI, vol. 10(10), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sauter, Philipp A. & Mußhoff, Oliver & Möhring, Bernhard & Wilhelm, Stefan, 2016. "Faustmann vs. real options theory – An experimental investigation of foresters’ harvesting decisions," Journal of Forest Economics, Elsevier, vol. 24(C), pages 1-20.
    2. Miguel A. Lejeune & Janne Kettunen, 2017. "Managing Reliability and Stability Risks in Forest Harvesting," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 620-638, October.
    3. Attallah, May & Abildtrup, Jens & Stenger, Anne, 2022. "Non-monetary incentives for sustainable biomass harvest: An experimental approach," Resource and Energy Economics, Elsevier, vol. 69(C).
    4. Meilby, Henrik & Brazee, Richard J., 12. "Sustainibility and Long-term Dynamics of Forests: Methods and Metrics for Detection of Convergence and Stationarity," Scandinavian Forest Economics: Proceedings of the Biennial Meeting of the Scandinavian Society of Forest Economics, Scandinavian Society of Forest Economics, issue 40, May.
    5. Knoke, Thomas & Kindu, Mengistie & Jarisch, Isabelle & Gosling, Elizabeth & Friedrich, Stefan & Bödeker, Kai & Paul, Carola, 2020. "How considering multiple criteria, uncertainty scenarios and biological interactions may influence the optimal silvicultural strategy for a mixed forest," Forest Policy and Economics, Elsevier, vol. 118(C).
    6. Ouvrard, Benjamin & Abildtrup, Jens & Bostedt, Göran & Stenger, Anne, 2019. "Determinants of forest owners attitudes towards wood ash recycling in Sweden - Can the nutrient cycle be closed?," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    7. Josset, Clement & Shanafelt, David W. & Abildtrup, Jens & Stenger, Anne, 2023. "Probabilistic typology of private forest owners: A tool to target the development of new market for ecosystem services," Land Use Policy, Elsevier, vol. 134(C).
    8. Lawrence, Anna & Deuffic, Philippe & Hujala, Teppo & Nichiforel, Liviu & Feliciano, Diana & Jodlowski, Krzysztof & Lind, Torgny & Marchal, Didier & Talkkari, Ari & Teder, Meelis & Vilkriste, Lelde & W, 2020. "Extension, advice and knowledge systems for private forestry: Understanding diversity and change across Europe," Land Use Policy, Elsevier, vol. 94(C).
    9. Nielsen, Anne Sofie Elberg & Jacobsen, Jette Bredahl & Strange, Niels, 2018. "Landowner participation in forest conservation programs: A revealed approach using register, spatial and contract data," Journal of Forest Economics, Elsevier, vol. 30(C), pages 1-12.
    10. Dragicevic, Arnaud & Lobianco, Antonello & Leblois, Antoine, 2016. "Forest planning and productivity-risk trade-off through the Markowitz mean-variance model," Forest Policy and Economics, Elsevier, vol. 64(C), pages 25-34.
    11. Lien, G. & Stordal, S. & Hardaker, J.B. & Asheim, L.J., 2007. "Risk aversion and optimal forest replanting: A stochastic efficiency study," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1584-1592, September.
    12. Pukkala, Timo, 2016. "Plenterwald, Dauerwald, or clearcut?," Forest Policy and Economics, Elsevier, vol. 62(C), pages 125-134.
    13. Arnould, Maxence & Morel, Laure & Fournier, Meriem, 2022. "Embedding non-industrial private forest owners in forest policy and bioeconomy issues using a Living Lab concept," Forest Policy and Economics, Elsevier, vol. 139(C).
    14. Chang, Sun Joseph & Gadow, Klaus V., 2010. "Application of the generalized Faustmann model to uneven-aged forest management," Journal of Forest Economics, Elsevier, vol. 16(4), pages 313-325, December.
    15. Amacher, Gregory S. & Brazee, Richard J. & Deegen, Peter, 2011. "Faustmann continues to yield," Journal of Forest Economics, Elsevier, vol. 17(3), pages 231-234, August.
    16. Parkatti, Vesa-Pekka & Tahvonen, Olli, 2021. "Economics of multifunctional forestry in the Sámi people homeland region," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    17. Lautrup, M. & Panduro, T.E. & Olsen, J.V. & Pedersen, M.F. & Jacobsen, J.B., 2023. "Is there more to trees than timber? Estimating the private amenity value of forests using a hedonic land model for combined agricultural properties," Forest Policy and Economics, Elsevier, vol. 146(C).
    18. Chang, Sun Joseph, 2020. "Twenty one years after the publication of the generalized Faustmann formula," Forest Policy and Economics, Elsevier, vol. 118(C).
    19. Miguel A. Lejeune & Janne Kettunen, 2018. "A fractional stochastic integer programming problem for reliability-to-stability ratio in forest harvesting," Computational Management Science, Springer, vol. 15(3), pages 583-597, October.
    20. Matteo Jucker Riva & Hanspeter Liniger & Alejandro Valdecantos & Gudrun Schwilch, 2016. "Impacts of Land Management on the Resilience of Mediterranean Dry Forests to Fire," Sustainability, MDPI, vol. 8(10), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:143:y:2018:i:c:p:210-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.