Advanced Search
MyIDEAS: Login to save this article or follow this journal

A nice estimation of Gini index and power Pen's parade

Contents:

Author Info

  • Sadefo Kamdem, Jules

Abstract

Under the assumption that an economic variable y such as income, is a power function of its rank among n individuals, we provide the coefficient of variation and the Gini index as functions of the power degree of the Pen's parade. In fact, knowing the power degree of the Pen's parade function, we obtain the coefficient of variation and a sharp analytical simple way to compute Gini index in terms of the power degree. Reciprocally, knowing, the coefficient of variation of a said variable, we can also provide the power degree of the corresponding Pen's parade, hence deducting its shape. Several examples are given to illustrate our methods. Special attention is given to countries' Gini indices of the World development indicators report 2009 (WDI 2009).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0264999312000715
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Economic Modelling.

Volume (Year): 29 (2012)
Issue (Month): 4 ()
Pages: 1299-1304

as in new window
Handle: RePEc:eee:ecmode:v:29:y:2012:i:4:p:1299-1304

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/30411

Related research

Keywords: Applied econometrics; Development economics; Gini index; Income inequality; Pen's parade; World development indicators;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Tomson Ogwang, 2011. "QUADRATIC PEN's PARADES: SOME NEW RESULTS AND AN APPLICATION," Working Papers 1101, Brock University, Department of Economics, revised Dec 2011.
  2. Stéphane Mussard & J. Sadefo Kamdem & Françoise Seyte & Michel Terraza, 2011. "Quadratic Pen'S Parade And The Computation Of The Gini Index," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 57(3), pages 583-587, 09.
  3. Milanovic, Branko, 1997. "A simple way to calculate the Gini coefficient, and some implications," Economics Letters, Elsevier, vol. 56(1), pages 45-49, September.
  4. Yitzhaki, Shlomo, 1982. "Stochastic Dominance, Mean Variance, and Gini's Mean Difference," American Economic Review, American Economic Association, vol. 72(1), pages 178-85, March.
  5. Gastwirth, Joseph L, 1972. "The Estimation of the Lorenz Curve and Gini Index," The Review of Economics and Statistics, MIT Press, vol. 54(3), pages 306-16, August.
  6. Shalit, Haim & Yitzhaki, Shlomo, 1984. " Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets," Journal of Finance, American Finance Association, vol. 39(5), pages 1449-68, December.
  7. World Bank, 2009. "World Development Indicators 2009," World Bank Publications, The World Bank, number 4367, August.
  8. Lerman, Robert I. & Yitzhaki, Shlomo, 1984. "A note on the calculation and interpretation of the Gini index," Economics Letters, Elsevier, vol. 15(3-4), pages 363-368.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:29:y:2012:i:4:p:1299-1304. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.