IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v92y2015icp126-133.html
   My bibliography  Save this article

Detecting misspecification in the random-effects structure of cumulative logit models

Author

Listed:
  • Lin, Kuo-Chin
  • Chen, Yi-Ju

Abstract

A common approach to analyzing longitudinal ordinal data is to apply generalized linear mixed models (GLMMs). The efficiency and validity of inference for parameters are affected by the random-effects distribution in GLMMs. A proposed test is developed based on the observed data and a reconstructed data set induced from the observed data for diagnosing the random-effects misspecification in cumulative logit models for longitudinal ordinal data, extending the idea presented by Huang (2009) for longitudinal binary data. The proposed test statistic has the quadratic form of the difference of maximum likelihood estimators between the observed data and the reconstructed data, and it follows a limiting chi-squared distribution when the model is correctly specified. The simulation studies are conducted to assess the performance of the proposed test, and a clinical trial example demonstrates the application of the proposed test.

Suggested Citation

  • Lin, Kuo-Chin & Chen, Yi-Ju, 2015. "Detecting misspecification in the random-effects structure of cumulative logit models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 126-133.
  • Handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:126-133
    DOI: 10.1016/j.csda.2015.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001590
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saskia Litière & Ariel Alonso & Geert Molenberghs, 2007. "Type I and Type II Error Under Random-Effects Misspecification in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(4), pages 1038-1044, December.
    2. Verbeke, Geert & Lesaffre, Emmanuel, 1997. "The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 541-556, February.
    3. Agresti, Alan & Caffo, Brian & Ohman-Strickland, Pamela, 2004. "Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 639-653, October.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    5. Xianzheng Huang, 2009. "Diagnosis of Random-Effect Model Misspecification in Generalized Linear Mixed Models for Binary Response," Biometrics, The International Biometric Society, vol. 65(2), pages 361-368, June.
    6. Alonso, A. & Litière, S. & Molenberghs, G., 2008. "A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4474-4486, May.
    7. Rasmus Waagepetersen, 2006. "A Simulation‐based Goodness‐of‐fit Test for Random Effects in Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 721-731, December.
    8. Eric J. Tchetgen & Brent A. Coull, 2006. "A diagnostic test for the mixing distribution in a generalised linear mixed model," Biometrika, Biometrika Trust, vol. 93(4), pages 1003-1010, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuo-Chin Lin & Yi-Ju Chen, 2016. "Goodness-of-fit tests of generalized linear mixed models for repeated ordinal responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2053-2064, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xianzheng, 2011. "Detecting random-effects model misspecification via coarsened data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 703-714, January.
    2. Shun Yu & Xianzheng Huang, 2017. "Random-intercept misspecification in generalized linear mixed models for binary responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 333-359, August.
    3. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    4. Reza Drikvandi & Geert Verbeke & Geert Molenberghs, 2017. "Diagnosing misspecification of the random-effects distribution in mixed models," Biometrics, The International Biometric Society, vol. 73(1), pages 63-71, March.
    5. Bartolucci, Francesco & Bacci, Silvia & Pigini, Claudia, 2017. "Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data," Econometrics and Statistics, Elsevier, vol. 3(C), pages 112-131.
    6. Shun Yu & Xianzheng Huang, 2019. "Link misspecification in generalized linear mixed models with a random intercept for binary responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 827-843, September.
    7. Freddy Hernández & Viviana Giampaoli, 2018. "The Impact of Misspecified Random Effect Distribution in a Weibull Regression Mixed Model," Stats, MDPI, vol. 1(1), pages 1-29, May.
    8. Alonso, A. & Litière, S. & Molenberghs, G., 2008. "A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4474-4486, May.
    9. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    10. Saskia Litière & Ariel Alonso & Geert Molenberghs, 2007. "Type I and Type II Error Under Random-Effects Misspecification in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 63(4), pages 1038-1044, December.
    11. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
    12. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2012. "Asymptotic normality of posterior distributions for generalized linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 66-77.
    13. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    14. Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2021. "Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models," International Statistical Review, International Statistical Institute, vol. 89(1), pages 186-206, April.
    15. Francis K.C. Hui & Nicole A. Hill & A.H. Welsh, 2022. "Assuming independence in spatial latent variable models: Consequences and implications of misspecification," Biometrics, The International Biometric Society, vol. 78(1), pages 85-99, March.
    16. Liang Li & Jun Shao & Mari Palta, 2005. "A Longitudinal Measurement Error Model with a Semicontinuous Covariate," Biometrics, The International Biometric Society, vol. 61(3), pages 824-830, September.
    17. Bart Spiessens & Emmanuel Lesaffre & Geert Verbeke & KyungMann Kim, 2002. "Group Sequential Methods for an Ordinal Logistic Random-Effects Model Under Misspecification," Biometrics, The International Biometric Society, vol. 58(3), pages 569-575, September.
    18. Xianzheng Huang, 2009. "Diagnosis of Random-Effect Model Misspecification in Generalized Linear Mixed Models for Binary Response," Biometrics, The International Biometric Society, vol. 65(2), pages 361-368, June.
    19. Wendimagegn Ghidey & Emmanuel Lesaffre & Paul Eilers, 2004. "Smooth Random Effects Distribution in a Linear Mixed Model," Biometrics, The International Biometric Society, vol. 60(4), pages 945-953, December.
    20. Charles E. McCulloch & John M. Neuhaus, 2011. "Prediction of Random Effects in Linear and Generalized Linear Models under Model Misspecification," Biometrics, The International Biometric Society, vol. 67(1), pages 270-279, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:126-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.