Advanced Search
MyIDEAS: Login

Bayesian multiscale feature detection of log-spectral densities

Contents:

Author Info

  • Sørbye, Sigrunn H.
  • Hindberg, Kristian
  • Olsen, Lena R.
  • Rue, Håvard
Registered author(s):

    Abstract

    A fully-automatic Bayesian visualization tool to identify periodic components of evenly sampled stationary time series, is presented. The given method applies the multiscale ideas of the SiZer-methodology to the log-spectral density of a given series. The idea is to detect significant peaks in the true underlying curve viewed at different resolutions or scales. The results are displayed in significance maps, illustrating for which scales and for which frequencies, peaks in the log-spectral density are detected as significant. The inference involved in producing the significance maps is performed using the recently developed simplified Laplace approximation. This is a Bayesian deterministic approach used to get accurate estimates of posterior marginals for latent Gaussian Markov random fields at a low computational cost, avoiding the use of Markov chain Monte Carlo techniques. Application of the given exploratory tool is illustrated analyzing both synthetic and real time series.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8V-4W0SJVP-3/2/9e473732fde4e61c0fc5be2a768a6e9b
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 53 (2009)
    Issue (Month): 11 (September)
    Pages: 3746-3754

    as in new window
    Handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3746-3754

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. H�vard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392.
    2. Oigard, Tor Arne & Rue, Havard & Godtliebsen, Fred, 2006. "Bayesian multiscale analysis for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1719-1730, December.
    3. Hannig, J. & Marron, J.S., 2006. "Advanced Distribution Theory for SiZer," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 484-499, June.
    4. Nidhan Choudhuri & Subhashis Ghosal & Anindya Roy, 2004. "Bayesian Estimation of the Spectral Density of a Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1050-1059, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:11:p:3746-3754. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.