IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v157y2021ics0167947320302425.html
   My bibliography  Save this article

Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms

Author

Listed:
  • Wiqvist, Samuel
  • Golightly, Andrew
  • McLean, Ashleigh T.
  • Picchini, Umberto

Abstract

Stochastic differential equation mixed-effects models (SDEMEMs) are flexible hierarchical models that are able to account for random variability inherent in the underlying time-dynamics, as well as the variability between experimental units and, optionally, account for measurement error. Fully Bayesian inference for state-space SDEMEMs is performed, using data at discrete times that may be incomplete and subject to measurement error. However, the inference problem is complicated by the typical intractability of the observed data likelihood which motivates the use of sampling-based approaches such as Markov chain Monte Carlo. A Gibbs sampler is proposed to target the marginal posterior of all parameter values of interest. The algorithm is made computationally efficient through careful use of blocking strategies and correlated pseudo-marginal Metropolis–Hastings steps within the Gibbs scheme. The resulting methodology is flexible and is able to deal with a large class of SDEMEMs. The methodology is demonstrated on three case studies, including tumor growth dynamics and neuronal data. The gains in terms of increased computational efficiency are model and data dependent, but unless bespoke sampling strategies requiring analytical derivations are possible for a given model, we generally observe an efficiency increase of one order of magnitude when using correlated particle methods together with our blocked-Gibbs strategy.

Suggested Citation

  • Wiqvist, Samuel & Golightly, Andrew & McLean, Ashleigh T. & Picchini, Umberto, 2021. "Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302425
    DOI: 10.1016/j.csda.2020.107151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320302425
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/1124 is not listed on IDEAS
    2. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    3. Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
    4. Simon N. Wood, 2010. "Statistical inference for noisy nonlinear ecological dynamic systems," Nature, Nature, vol. 466(7310), pages 1102-1104, August.
    5. Picchini, Umberto & Ditlevsen, Susanne, 2011. "Practical estimation of high dimensional stochastic differential mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1426-1444, March.
    6. Kohn, R. & Quiroz, M. & Tran, M.-N. & Villani, M., 2016. "Block-Wise Pseudo-Marginal Metropolis-Hastings," Working Papers 2016-03, University of Sydney Business School, Discipline of Business Analytics.
    7. Umberto Picchini & Julie Lyng Forman, 2019. "Bayesian inference for stochastic differential equation mixed effects models of a tumour xenography study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(4), pages 887-913, August.
    8. repec:dau:papers:123456789/4642 is not listed on IDEAS
    9. Sophie Donnet & Jean-Louis Foulley & Adeline Samson, 2010. "Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations," Biometrics, The International Biometric Society, vol. 66(3), pages 733-741, September.
    10. Paul Fearnhead & Vasilieos Giagos & Chris Sherlock, 2014. "Inference for reaction networks using the linear noise approximation," Biometrics, The International Biometric Society, vol. 70(2), pages 457-466, June.
    11. repec:dau:papers:123456789/11429 is not listed on IDEAS
    12. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    13. Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.
    14. George Deligiannidis & Arnaud Doucet & Michael K. Pitt, 2018. "The correlated pseudomarginal method," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 839-870, November.
    15. A. Doucet & M. K. Pitt & G. Deligiannidis & R. Kohn, 2015. "Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator," Biometrika, Biometrika Trust, vol. 102(2), pages 295-313.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
    2. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    3. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    4. Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
    5. Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019. "Speeding Up MCMC by Efficient Data Subsampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
    6. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    7. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    8. Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
    9. Delattre, Maud & Genon-Catalot, Valentine & Larédo, Catherine, 2018. "Parametric inference for discrete observations of diffusion processes with mixed effects," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1929-1957.
    10. Oscar García, 2019. "Estimating reducible stochastic differential equations by conversion to a least-squares problem," Computational Statistics, Springer, vol. 34(1), pages 23-46, March.
    11. Charlotte Dion, 2016. "Nonparametric estimation in a mixed-effect Ornstein–Uhlenbeck model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 919-951, November.
    12. Chris Sherlock, 2016. "Optimal Scaling for the Pseudo-Marginal Random Walk Metropolis: Insensitivity to the Noise Generating Mechanism," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 869-884, September.
    13. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    14. Jonathan U Harrison & Ruth E Baker, 2020. "An automatic adaptive method to combine summary statistics in approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    15. Thomas Lux, 2022. "Bayesian Estimation of Agent-Based Models via Adaptive Particle Markov Chain Monte Carlo," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 451-477, August.
    16. Matias Quiroz & Mattias Villani & Robert Kohn & Minh-Ngoc Tran & Khue-Dung Dang, 2018. "Subsampling MCMC - an Introduction for the Survey Statistician," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 33-69, December.
    17. Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc & Villani, Mattias, 2019. "Hamiltonian Monte Carlo with Energy Conserving Subsampling," Working Paper Series 372, Sveriges Riksbank (Central Bank of Sweden).
    18. Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
    19. Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
    20. Patrick Leung & Catherine S. Forbes & Gael M Martin & Brendan McCabe, 2019. "Forecasting Observables with Particle Filters: Any Filter Will Do!," Monash Econometrics and Business Statistics Working Papers 22/19, Monash University, Department of Econometrics and Business Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.