IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v155y2021ics0167947320301857.html
   My bibliography  Save this article

Robust variable selection with exponential squared loss for the spatial autoregressive model

Author

Listed:
  • Song, Yunquan
  • Liang, Xijun
  • Zhu, Yanji
  • Lin, Lu

Abstract

Spatial dependent data frequently occur in spatial econometrics and endemiology. In this work, we propose a class of penalized robust regression estimators based on exponential squared loss with independent and identical distributed errors for general spatial autoregressive models. A penalized exponential squared loss with the adaptive lasso penalty is employed for simultaneous model selection and parameter estimation. Under mild conditions, we establish the asymptotic and oracle property of the proposed estimators The induced nonconvex nondifferentiable mathematical programming offer challenges for solving algorithms. We specially design a block coordinate descent (BCD) algorithm equipped with CCCP procedure for efficiently solving the subproblem. Moreover, we provide a convergence guarantee of the BCD algorithm. Every limit point of the iterated solutions is proved a stationary point. We also present a convergence speed of spatial weight ρk. Numerical studies illustrate that the proposed method is particularly robust and applicable when the outliers or intensive noise exist in the observations or the estimated spatial weight matrix is inaccurate. All the source code could be freely downloaded from https://github.com/Isaac-QiXing/SAR.

Suggested Citation

  • Song, Yunquan & Liang, Xijun & Zhu, Yanji & Lin, Lu, 2021. "Robust variable selection with exponential squared loss for the spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:csdana:v:155:y:2021:i:c:s0167947320301857
    DOI: 10.1016/j.csda.2020.107094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301857
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    3. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    4. Olivier Parent & James Lesage, 2005. "Bayesian Model Averaging for Spatial Econometric Models," Post-Print hal-00375489, HAL.
    5. Liang, Hua & Li, Runze, 2009. "Variable Selection for Partially Linear Models With Measurement Errors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 234-248.
    6. Pace, R Kelley & Gilley, Otis W, 1997. "Using the Spatial Configuration of the Data to Improve Estimation," The Journal of Real Estate Finance and Economics, Springer, vol. 14(3), pages 333-340, May.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    9. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    10. Kelejian, Harry H. & Piras, Gianfranco, 2011. "An extension of Kelejian's J-test for non-nested spatial models," Regional Science and Urban Economics, Elsevier, vol. 41(3), pages 281-292, May.
    11. Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
    12. Philipp Piribauer, 2016. "Heterogeneity in spatial growth clusters," Empirical Economics, Springer, vol. 51(2), pages 659-680, September.
    13. Xueqin Wang & Yunlu Jiang & Mian Huang & Heping Zhang, 2013. "Robust Variable Selection With Exponential Squared Loss," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 632-643, June.
    14. Harry Kelejian, 2008. "A spatial J-test for model specification against a single or a set of non-nested alternatives," Letters in Spatial and Resource Sciences, Springer, vol. 1(1), pages 3-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengfei Tang & Yanmei Shi & Qi Zhang, 2023. "Bias-Corrected Inference of High-Dimensional Generalized Linear Models," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    2. Yuanyuan Ju & Yan Yang & Mingxing Hu & Lin Dai & Liucang Wu, 2022. "Bayesian Influence Analysis of the Skew-Normal Spatial Autoregression Models," Mathematics, MDPI, vol. 10(8), pages 1-19, April.
    3. Sun, Fei & Zhang, Qi, 2023. "Robust transfer learning of high-dimensional generalized linear model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    4. Jiaxuan Liang & Yi Cheng & Yuqi Su & Shuyue Xiao & Yunquan Song, 2022. "Variable Selection for Spatial Logistic Autoregressive Models," Mathematics, MDPI, vol. 10(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan Liu & Jianbao Chen, 2021. "Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances," Mathematics, MDPI, vol. 9(12), pages 1-20, June.
    2. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    3. Tianfa Xie & Ruiyuan Cao & Jiang Du, 2020. "Variable selection for spatial autoregressive models with a diverging number of parameters," Statistical Papers, Springer, vol. 61(3), pages 1125-1145, June.
    4. Jiawei Hou & Yunquan Song, 2022. "Interquantile shrinkage in spatial additive autoregressive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1030-1057, December.
    5. Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
    6. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    7. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    8. Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
    9. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    10. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    11. Fang Lu & Jing Yang & Xuewen Lu, 2022. "One-step oracle procedure for semi-parametric spatial autoregressive model and its empirical application to Boston housing price data," Empirical Economics, Springer, vol. 62(6), pages 2645-2671, June.
    12. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    13. Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
    14. Smucler, Ezequiel & Yohai, Victor J., 2017. "Robust and sparse estimators for linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 116-130.
    15. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    16. Xia, Xiaochao & Liu, Zhi & Yang, Hu, 2016. "Regularized estimation for the least absolute relative error models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 104-119.
    17. Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
    18. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    19. Jiang, Rong & Qian, Wei-Min, 2016. "Quantile regression for single-index-coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 305-317.
    20. Muhammad Amin & Lixin Song & Milton Abdul Thorlie & Xiaoguang Wang, 2015. "SCAD-penalized quantile regression for high-dimensional data analysis and variable selection," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 212-235, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:155:y:2021:i:c:s0167947320301857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.