IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v124y2018icp71-86.html
   My bibliography  Save this article

Multilevel rejection sampling for approximate Bayesian computation

Author

Listed:
  • Warne, David J.
  • Baker, Ruth E.
  • Simpson, Matthew J.

Abstract

Likelihood-free methods, such as approximate Bayesian computation, are powerful tools for practical inference problems with intractable likelihood functions. Markov chain Monte Carlo and sequential Monte Carlo variants of approximate Bayesian computation can be effective techniques for sampling posterior distributions in an approximate Bayesian computation setting. However, without careful consideration of convergence criteria and selection of proposal kernels, such methods can lead to very biased inference or computationally inefficient sampling. In contrast, rejection sampling for approximate Bayesian computation, despite being computationally intensive, results in independent, identically distributed samples from the approximated posterior. An alternative method is proposed for the acceleration of likelihood-free Bayesian inference that applies multilevel Monte Carlo variance reduction techniques directly to rejection sampling. The resulting method retains the accuracy advantages of rejection sampling while significantly improving the computational efficiency.

Suggested Citation

  • Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
  • Handle: RePEc:eee:csdana:v:124:y:2018:i:c:p:71-86
    DOI: 10.1016/j.csda.2018.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318300483
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. C. Drovandi & A. N. Pettitt, 2011. "Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation," Biometrics, The International Biometric Society, vol. 67(1), pages 225-233, March.
    2. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    3. Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
    4. Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
    5. Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, June.
    6. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    7. Beskos, Alexandros & Jasra, Ajay & Law, Kody & Tempone, Raul & Zhou, Yan, 2017. "Multilevel sequential Monte Carlo samplers," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1417-1440.
    8. repec:dau:papers:123456789/5724 is not listed on IDEAS
    9. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippi Sarah & Barnes Chris P. & Stumpf Michael P.H. & Cornebise Julien, 2013. "On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 87-107, March.
    2. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    3. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    4. Maxime Lenormand & Franck Jabot & Guillaume Deffuant, 2013. "Adaptive approximate Bayesian computation for complex models," Computational Statistics, Springer, vol. 28(6), pages 2777-2796, December.
    5. Brenda N Vo & Christopher C Drovandi & Anthony N Pettitt & Graeme J Pettet, 2015. "Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-22, December.
    6. Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
    7. Creel, Michael & Kristensen, Dennis, 2016. "On selection of statistics for approximate Bayesian computing (or the method of simulated moments)," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 99-114.
    8. Hai‐Dang Dau & Nicolas Chopin, 2022. "Waste‐free sequential Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 114-148, February.
    9. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    10. Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
    11. Ajay Jasra & Kody Law & Carina Suciu, 2020. "Advanced Multilevel Monte Carlo Methods," International Statistical Review, International Statistical Institute, vol. 88(3), pages 548-579, December.
    12. Silk Daniel & Filippi Sarah & Stumpf Michael P. H., 2013. "Optimizing threshold-schedules for sequential approximate Bayesian computation: applications to molecular systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 603-618, October.
    13. Drovandi, Christopher C. & Pettitt, Anthony N., 2011. "Likelihood-free Bayesian estimation of multivariate quantile distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2541-2556, September.
    14. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    15. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    16. Hideyuki Tanaka & Toshihiro Yamada, 2012. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method," Papers 1210.0670, arXiv.org, revised Nov 2013.
    17. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    18. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    19. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
    20. Bertl Johanna & Ewing Gregory & Kosiol Carolin & Futschik Andreas, 2017. "Approximate maximum likelihood estimation for population genetic inference," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 387-405, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:124:y:2018:i:c:p:71-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.