Advanced Search
MyIDEAS: Login to save this article or follow this journal

Simulation-based Bayesian inference for epidemic models

Contents:

Author Info

  • McKinley, Trevelyan J.
  • Ross, Joshua V.
  • Deardon, Rob
  • Cook, Alex R.
Registered author(s):

    Abstract

    A powerful and flexible method for fitting dynamic models to missing and censored data is to use the Bayesian paradigm via data-augmented Markov chain Monte Carlo (DA-MCMC). This samples from the joint posterior for the parameters and missing data, but requires high memory overheads for large-scale systems. In addition, designing efficient proposal distributions for the missing data is typically challenging. Pseudo-marginal methods instead integrate across the missing data using a Monte Carlo estimate for the likelihood, generated from multiple independent simulations from the model. These techniques can avoid the high memory requirements of DA-MCMC, and under certain conditions produce the exact marginal posterior distribution for parameters. A novel method is presented for implementing importance sampling for dynamic epidemic models, by conditioning the simulations on sets of validity criteria (based on the model structure) as well as the observed data. The flexibility of these techniques is illustrated using both removal time and final size data from an outbreak of smallpox. It is shown that these approaches can circumvent the need for reversible-jump MCMC, and can allow inference in situations where DA-MCMC is impossible due to computationally infeasible likelihoods.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S016794731200446X
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 71 (2014)
    Issue (Month): C ()
    Pages: 434-447

    as in new window
    Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:434-447

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords: Bayesian inference; Epidemic models; Markov chain Monte Carlo; Pseudo-marginal methods; Smallpox;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, 06.
    2. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, Biometrika Trust, vol. 96(4), pages 983-990.
    3. Wong, Heung & Shao, Quanxi & Ip, Wai-cheung, 2013. "Modeling respiratory illnesses with change point: A lesson from the SARS epidemic in Hong Kong," Computational Statistics & Data Analysis, Elsevier, Elsevier, vol. 57(1), pages 589-599.
    4. McKinley Trevelyan & Cook Alex R & Deardon Robert, 2009. "Inference in Epidemic Models without Likelihoods," The International Journal of Biostatistics, De Gruyter, De Gruyter, vol. 5(1), pages 1-40, July.
    5. Wierman, John C. & Marchette, David J., 2004. "Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction," Computational Statistics & Data Analysis, Elsevier, Elsevier, vol. 45(1), pages 3-23, February.
    6. Yang, Yang & Longini Jr., Ira M. & Elizabeth Halloran, M., 2007. "A data-augmentation method for infectious disease incidence data from close contact groups," Computational Statistics & Data Analysis, Elsevier, Elsevier, vol. 51(12), pages 6582-6595, August.
    7. Philip D. O'Neill & David J. Balding & Niels G. Becker & Mervi Eerola & Denis Mollison, 2000. "Analyses of infectious disease data from household outbreaks by Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(4), pages 517-542.
    8. Hohle, Michael & Feldmann, Ulrike, 2007. "RLadyBug--An R package for stochastic epidemic models," Computational Statistics & Data Analysis, Elsevier, Elsevier, vol. 52(2), pages 680-686, October.
    9. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342.
    10. Nikolaos Demiris & Philip D. O'Neill, 2005. "Bayesian inference for stochastic multitype epidemics in structured populations via random graphs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 731-745.
    11. Erhardt, Robert J. & Smith, Richard L., 2012. "Approximate Bayesian computing for spatial extremes," Computational Statistics & Data Analysis, Elsevier, Elsevier, vol. 56(6), pages 1468-1481.
    12. Cappé, Olivier & Guillin, Arnaud & Marin, Jean-Michel & Robert, Christian P., 2004. "Population Monte Carlo," Economics Papers from University Paris Dauphine 123456789/6072, Paris Dauphine University.
    13. Nikolaos Demiris & Philip D. O'Neill, 2005. "Bayesian inference for epidemics with two levels of mixing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 265-280.
    14. Celeux, Gilles & Marin, Jean-Michel & Robert, Christian P., 2006. "Iterated importance sampling in missing data problems," Computational Statistics & Data Analysis, Elsevier, Elsevier, vol. 50(12), pages 3386-3404, August.
    15. Paul Fearnhead & Loukia Meligkotsidou, 2004. "Exact filtering for partially observed continuous time models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 771-789.
    16. P. D. O'Neill & G. O. Roberts, 1999. "Bayesian inference for partially observed stochastic epidemics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 121-129.
    17. Celeux, Gilles & Marin, Jean-Michel & Robert, Christian P., 2006. "Iterated importance sampling in missing data problems," Economics Papers from University Paris Dauphine 123456789/6215, Paris Dauphine University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:434-447. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.