IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v89y2016icp232-242.html
   My bibliography  Save this article

An APF and MPC combined collaborative driving controller using vehicular communication technologies

Author

Listed:
  • Huang, Zichao
  • Wu, Qing
  • Ma, Jie
  • Fan, Shiqi

Abstract

Collaborative driving is a growing domain of Intelligent Transportation Systems (ITS) which aim to navigate traffic both efficiently and safely. Cooperation between vehicles heavily rely on the comprehensive information collected. With the development of vehicular communication technologies, information can be shared between vehicles or infrastructures through Vehicle-to-Vehicle (V2V)/Vehicle-to-Infrastructure (V2I) data exchange. By taking advantage of data sharing between vehicles, this paper proposes an Artificial Potential Field (APF) and Model Predictive Control (MPC) combined controller to implement collaborative driving in complex environments. Firstly, an APF model ​containing three components is developed to describe the mutual effect and collaboration properties between vehicles and surrounding environments. Afterwards, a MPC cost function for optimized control, considering both kinematic characteristics and environmental effect conveyed by APF, is presented to address the problem of collaborative driving. Such controller is designed from the perspective of multi-objective and multi-constraint optimization which takes the vehicle motion constraints, safety and comfort requirements into consideration. The prominent advantage of the proposed approach is that it can deal with the problems of route planning and manipulating simultaneously. To validate the proposed approach, a variety of scenario simulations are conducted in MATLAB, and the performance of the proposed method are verified.

Suggested Citation

  • Huang, Zichao & Wu, Qing & Ma, Jie & Fan, Shiqi, 2016. "An APF and MPC combined collaborative driving controller using vehicular communication technologies," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 232-242.
  • Handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:232-242
    DOI: 10.1016/j.chaos.2015.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915003689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    2. Varaiya, P. P. & Shladover, Steven E., 1991. "Sketch Of An Ivhs Systems Architecture," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5jh5n9w1, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueliang Wei & Cunzhong Li & Mingxuan Qi & Bingyang Luo & Xiangtian Deng & Guorong Zhu, 2019. "Research on Harmonic Current Amplification Effect of Parallel APF Compensating Voltage Source Nonlinear Load," Energies, MDPI, vol. 12(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    2. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    3. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    4. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    5. Kathrin Goldmann & Gernot Sieg, 2020. "Quantifying the phantom jam externality: The case of an Autobahn section in Germany," Working Papers 30, Institute of Transport Economics, University of Muenster.
    6. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    7. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    8. Richard Arnott & Anatolii Kokoza & Mehdi Naji, 2015. "A Model of Rush-Hour Traffic in an Isotropic Downtown Area," Working Papers 201511, University of California at Riverside, Department of Economics.
    9. Jin, Wen-Long, 2017. "Kinematic wave models of lane-drop bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 507-522.
    10. Scag & Path, 1993. "Highway Electrification And Automation Technologies - Regional Impacts Analysis Project: Executive Summary," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0dg9b907, Institute of Transportation Studies, UC Berkeley.
    11. Eskafi, F. H. & Nassiri-toussi, K. & Liu, G., 1998. "Adaptive Baud Protocol For Wireless Communication," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6d86r98f, Institute of Transportation Studies, UC Berkeley.
    12. Alvarez, Luis & Horowitz, Roberto, 1997. "Safe Platooning In Automated Highway Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1v97t5w1, Institute of Transportation Studies, UC Berkeley.
    13. Coifman, Benjamin & Kim, Seoungbum, 2011. "Extended bottlenecks, the fundamental relationship, and capacity drop on freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 980-991, November.
    14. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    15. Duret, Aurelien & Wang, Meng & Ladino, Andres, 2020. "A hierarchical approach for splitting truck platoons near network discontinuities," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 285-302.
    16. Xiong, Bang-Kai & Jiang, Rui & Tian, Jun-Fang, 2019. "Improving two-dimensional intelligent driver models to overcome overly high deceleration in car-following," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    17. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    18. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    19. Grembek, Offer & Kim, Kwangho & Kwon, Oh Hoon & Lee, Jinwoo & Liu, Haotian & Park, Min Ju & Washington, Simon & Ragland, David & Madanat, Samer M., 2012. "Experimental Evaluation of the Continuous Risk Profile (CRP) Approach to the Current Caltrans Methodology for High Collision Concentration Location Identification," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6sg5c0ng, Institute of Transportation Studies, UC Berkeley.
    20. Eskafi, Farokh H., 1996. "Modeling And Simulation Of The Automated Highway System," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt11m6t11p, Institute of Transportation Studies, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:89:y:2016:i:c:p:232-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.