IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922006622.html
   My bibliography  Save this article

Formation factors for a class of deterministic models of pre-fractal pore-fracture networks

Author

Listed:
  • Balankin, Alexander S.
  • Ramírez-Joachin, Juan
  • González-López, Gabriela
  • Gutíerrez-Hernández, Sebastián

Abstract

The main aim of this paper is to reveal effects of fractal features on the formation factors associated with different transport processes in scale invariant pore-fracture networks. Accordingly, we explore a class of deterministic infinitely ramified networks associated with pre-fractal standard Sierpinski carpets (including Sierpinski cubes and inverse Menger sponges). The focus is placed on the effects of network ramification, connectivity, and loopiness on the transport streamline constriction and tortuosity of transmission paths. The differences between the formation factors associated with the diffusibility, electrical conductivity, and hydraulic permeability are elucidated. Explicit expressions for the constrictivity and formation factors of deterministic pre-fractal networks are derived. In this regard, we stress that the electrical formation factor obeys the Archie law only if the random walk in the pre-fractal pore-fracture network is recurrent. We also note that the Archie's exponent can be either equal to, or less than the power-law exponent characterizing the scaling behavior of diffusibility. The notion of the structural formation factor is introduced. The values of scaling exponents characterizing the formation factors associated with different transport properties of the model networks are found to be within the ranges of field observations.

Suggested Citation

  • Balankin, Alexander S. & Ramírez-Joachin, Juan & González-López, Gabriela & Gutíerrez-Hernández, Sebastián, 2022. "Formation factors for a class of deterministic models of pre-fractal pore-fracture networks," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006622
    DOI: 10.1016/j.chaos.2022.112452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922006622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Jianchao & Zhang, Zhien & Wei, Wei & Guo, Dongming & Li, Shuai & Zhao, Peiqiang, 2019. "The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity," Energy, Elsevier, vol. 188(C).
    2. Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Alexander S. Balankin & Juliã N Patiã‘O Ortiz & Miguel Patiã‘O Ortiz, 2022. "Inherent Features Of Fractal Sets And Key Attributes Of Fractal Models," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(04), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Zine El Abiddine Fellah & Mohamed Fellah & Nicholas O. Ongwen & Erick Ogam & Claude Depollier, 2021. "Acoustics of Fractal Porous Material and Fractional Calculus," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    3. Shan, Baochao & Wang, Runxi & Guo, Zhaoli & Wang, Peng, 2021. "Contribution quantification of nanoscale gas transport in shale based on strongly inhomogeneous kinetic model," Energy, Elsevier, vol. 228(C).
    4. Peiyun Xu & Shugang Li & Haifei Lin & Yang Ding & Haiqing Shuang & Sibo Liu & Yu Tian, 2021. "Fractal Characterization of Pressure-Relief Gas Permeability Evolution in a Mining Fracture Network," Energies, MDPI, vol. 14(21), pages 1-21, October.
    5. Zhang, Yongchao & Wan, Yizhao & Liu, Lele & Wang, Daigang & Li, Chengfeng & Liu, Changling & Wu, Nengyou, 2021. "Changes in reaction surface during the methane hydrate dissociation and its implications for hydrate production," Energy, Elsevier, vol. 230(C).
    6. Zhao, Pengxiang & Zhuo, Risheng & Li, Shugang & Shu, Chi-Min & Jia, Yongyong & Lin, Haifei & Chang, Zechen & Ho, Chun-Hsing & Laiwang, Bin & Xiao, Peng, 2021. "Fractal characteristics of methane migration channels in inclined coal seams," Energy, Elsevier, vol. 225(C).
    7. Bevilacqua, Luiz & Barros, Marcelo M., 2023. "The inverse problem for fractal curves solved with the dynamical approach method," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    9. Salina Borello, Eloisa & Peter, Costanzo & Panini, Filippo & Viberti, Dario, 2022. "Application of A∗ algorithm for microstructure and transport properties characterization from 3D rock images," Energy, Elsevier, vol. 239(PC).
    10. Zhu, Jingyun & Liu, Guannan & Luo, Ning & Gu, Jiayi & Liu, Hu & Ye, Dayu, 2023. "A new fractal model for quantitatively investigating the contribution of microstructural evolution to geothermal extraction," Renewable Energy, Elsevier, vol. 211(C), pages 42-54.
    11. Zeng, Fang & Dong, Chunmei & Lin, Chengyan & Tian, Shansi & Wu, Yuqi & Lin, Jianli & Liu, Binbin & Zhang, Xianguo, 2022. "Pore structure characteristics of reservoirs of Xihu Sag in East China Sea Shelf Basin based on dual resolution X-ray computed tomography and their influence on permeability," Energy, Elsevier, vol. 239(PD).
    12. Zhu, Hongjian & Ju, Yiwen & Yang, Manping & Huang, Cheng & Feng, Hongye & Qiao, Peng & Ma, Chao & Su, Xin & Lu, Yanjun & Shi, Erxiu & Han, Jinxuan, 2022. "Grain-scale petrographic evidence for distinguishing detrital and authigenic quartz in shale: How much of a role do they play for reservoir property and mechanical characteristic?," Energy, Elsevier, vol. 239(PC).
    13. Buczolich, Zoltán & Maga, Balázs & Vértesy, Gáspár, 2022. "Generic Hölder level sets and fractal conductivity," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Ma, Xinhua & Zhu, Weiping & Zheng, Tianyu & Wu, Keliu & Zhang, Kun & Ma, Kuiyou, 2020. "Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins," Applied Energy, Elsevier, vol. 261(C).
    15. Wu, Peng & Li, Yanghui & Yu, Tao & Wu, Zhaoran & Huang, Lei & Wang, Haijun & Song, Yongchen, 2023. "Microstructure evolution and dynamic permeability anisotropy during hydrate dissociation in sediment under stress state," Energy, Elsevier, vol. 263(PE).
    16. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Wang, Yaping & Yang, Xuan & Luo, Bing & Zhang, Wang & Zhang, Xinwen & Li, Changrong & Wang, Qifeng & Li, Caijun, 2021. "Quantitative evaluation of transport efficiency of fault-reservoir composite migration pathway systems in carbonate petroliferous basins," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922006622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.