IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921000850.html
   My bibliography  Save this article

Typical and atypical multifractal systems of urban spaces—using construction land in Zhengzhou from 1988 to 2015 as an example

Author

Listed:
  • Song, Zhijun
  • Jin, Wenxuan
  • Jiang, Guanghui
  • Li, Sichun
  • Ma, Wenqiu

Abstract

Urban spatial system is a pre-fractal system, which has a sensitive reaction zone similar to the self-organized critical state (SOC) of complex systems on different spatial scales. In this paper, theoretical analysis includes the interpretation of multifractal dimension spectrum (f(a)-a(q) fitted curve) and its parameters. According to q-value distribution area, the fitted curve is divided into interval A (typical multifractal system distribution), interval B (atypical multifractal system distribution) and interval C (mediocre distribution). Furthermore, this paper launches a case study of the four-year period of construction land in Zhengzhou since the reform and opening up to reveal the spatial-temporal evolution features and operational mechanism of this region from a broader dimension. Analysis shows that Zhengzhou's development has long been in a spatial development trend dominated by chaos (interval B) and mediocrity (interval C), and the influence of q-level with spatial multifractal feature (interval A) on each spatial scale is relatively weak. Until the 2010s, multifractal feature tends to be strengthened, and there is a tendency to dominate regional spatial evolution. The significance of this study is that the combination and evolution of three intervals of the f(a)-a(q) fitting curve can be used to reflect the trend and regularity of regional spatial multifractal system and spatial-temporal succession relationship between them, so as to deeply understand the inherent and complete development and evolution of the geographical objects.

Suggested Citation

  • Song, Zhijun & Jin, Wenxuan & Jiang, Guanghui & Li, Sichun & Ma, Wenqiu, 2021. "Typical and atypical multifractal systems of urban spaces—using construction land in Zhengzhou from 1988 to 2015 as an example," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921000850
    DOI: 10.1016/j.chaos.2021.110732
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921000850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanguang Chen, 2010. "Exploring the Fractal Parameters of Urban Growth and Form with Wave-Spectrum Analysis," Discrete Dynamics in Nature and Society, Hindawi, vol. 2010, pages 1-20, December.
    2. Paul A Longley & Victor Mesev, 2000. "On the Measurement and Generalisation of Urban Form," Environment and Planning A, , vol. 32(3), pages 473-488, March.
    3. Isabelle Thomas & Pierre Frankhauser & Marie‐Laurence De Keersmaecker, 2007. "Fractal dimension versus density of built‐up surfaces in the periphery of Brussels," Papers in Regional Science, Wiley Blackwell, vol. 86(2), pages 287-308, June.
    4. Michael Batty & Yichun Xie, 1999. "Self-organized criticality and urban development," Discrete Dynamics in Nature and Society, Hindawi, vol. 3, pages 1-16, January.
    5. Chen, Yanguang, 2012. "Zipf’s law, 1/f noise, and fractal hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 63-73.
    6. Isabelle Thomas & Pierre Frankhauser & Dominique Badariotti, 2012. "Comparing the fractality of European urban neighbourhoods: do national contexts matter?," Journal of Geographical Systems, Springer, vol. 14(2), pages 189-208, April.
    7. Lucien Benguigui & Daniel Czamanski & Maria Marinov & Yuval Portugali, 2000. "When and Where is a City Fractal?," Environment and Planning B, , vol. 27(4), pages 507-519, August.
    8. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    9. Chen, Yanguang & Jiang, Shiguo, 2009. "An analytical process of the spatio-temporal evolution of urban systems based on allometric and fractal ideas," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 49-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-Rojas, Blanca E. & Ramirez-Dámaso, Gabriel & Caballero, Francisco & Femat, Ricardo, 2022. "Crisis-induced intermittency in Mexican dam flows," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Joseph, Annie Julie & Pournami, P.N., 2021. "Multifractal theory based breast tissue characterization for early detection of breast cancer," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhijun SONG & Linjun YU, 2019. "Multifractal features of spatial variation in construction land in Beijing (1985–2015)," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.
    2. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    3. Chen, Yanguang & Feng, Jian, 2012. "Fractal-based exponential distribution of urban density and self-affine fractal forms of cities," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1404-1416.
    4. Chen, Yanguang, 2012. "Fractal dimension evolution and spatial replacement dynamics of urban growth," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 115-124.
    5. Chen, Yanguang & Huang, Linshan, 2019. "Modeling growth curve of fractal dimension of urban form of Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1038-1056.
    6. Jian Feng & Yanguang Chen, 2010. "Spatiotemporal Evolution of Urban Form and Land-Use Structure in Hangzhou, China: Evidence from Fractals," Environment and Planning B, , vol. 37(5), pages 838-856, October.
    7. Chen, Yanguang, 2013. "A set of formulae on fractal dimension relations and its application to urban form," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 150-158.
    8. Tadić, Bosiljka & Mitrović Dankulov, Marija & Melnik, Roderick, 2023. "Evolving cycles and self-organised criticality in social dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Yanguang Chen & Jiejing Wang, 2013. "Multifractal Characterization of Urban Form and Growth: The Case of Beijing," Environment and Planning B, , vol. 40(5), pages 884-904, October.
    10. Chen, Yanguang, 2009. "Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1766-1778.
    11. Yuqing Long & Yanguang Chen & Yajing Li, 2023. "Multifractal scaling analyses of the spatial diffusion pattern of COVID-19 pandemic in Chinese mainland," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    12. Chen, Yanguang & Zhou, Yixing, 2008. "Scaling laws and indications of self-organized criticality in urban systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 85-98.
    13. Myagmartseren Purevtseren & Bazarkhand Tsegmid & Myagmarjav Indra & Munkhnaran Sugar, 2018. "The Fractal Geometry of Urban Land Use: The Case of Ulaanbaatar City, Mongolia," Land, MDPI, vol. 7(2), pages 1-14, May.
    14. Isabelle Thomas & Pierre Frankhauser & Dominique Badariotti, 2012. "Comparing the fractality of European urban neighbourhoods: do national contexts matter?," Journal of Geographical Systems, Springer, vol. 14(2), pages 189-208, April.
    15. Francisco Martínez & Bastian Sepúlveda & Hermann Manríquez, 2023. "Fractal Organization of Chilean Cities: Observations from a Developing Country," Land, MDPI, vol. 12(2), pages 1-21, January.
    16. Cécile Tannier & Gilles Vuidel & Hélène Houot & Pierre Frankhauser, 2012. "Spatial Accessibility to Amenities in Fractal and Nonfractal Urban Patterns," Environment and Planning B, , vol. 39(5), pages 801-819, October.
    17. Chong Zhao & Yu Li & Min Weng, 2021. "A Fractal Approach to Urban Boundary Delineation Based on Raster Land Use Maps: A Case of Shanghai, China," Land, MDPI, vol. 10(9), pages 1-21, September.
    18. Chen, Yanguang & Wang, Yihan & Li, Xijing, 2019. "Fractal dimensions derived from spatial allometric scaling of urban form," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 122-134.
    19. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    20. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921000850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.