IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i1p63-73.html
   My bibliography  Save this article

Zipf’s law, 1/f noise, and fractal hierarchy

Author

Listed:
  • Chen, Yanguang

Abstract

Fractals, 1/f noise, and Zipf’s laws are frequently observed within the natural living world as well as in social institutions, representing three signatures of complex systems. All these observations are associated with scaling laws and therefore have created much research interest in many diverse scientific circles. However, the inherent relationships between these scaling phenomena are not yet clear. In this paper, theoretical demonstration and mathematical experiments based on urban studies are employed to reveal the analogy between fractal patterns, 1/f spectra, and the Zipf distribution. First, the multifractal process empirically suggests the Zipf distribution. Second, a 1/f spectrum is mathematically identical to Zipf’s law. Third, both 1/f spectra and Zipf’s law can be converted into a self-similar hierarchy. Fourth, fractals, 1/f spectra, Zipf’s law can be rescaled with similar exponential laws and power laws. The self-similar hierarchy is a more general scaling method which can be used to unify different scaling phenomena and rules in both physical and social systems such as cities, rivers, earthquakes, fractals, 1/f noise, and rank-size distributions. The mathematical laws of this hierarchical structure can provide us with a holistic perspective of looking at complexity and complex systems.

Suggested Citation

  • Chen, Yanguang, 2012. "Zipf’s law, 1/f noise, and fractal hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 63-73.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:1:p:63-73
    DOI: 10.1016/j.chaos.2011.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911001901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cai:popine:popu_p1998_10n1_0240 is not listed on IDEAS
    2. Eduardo G Altmann & Janet B Pierrehumbert & Adilson E Motter, 2009. "Beyond Word Frequency: Bursts, Lulls, and Scaling in the Temporal Distributions of Words," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-7, November.
    3. Yanguang Chen, 2010. "Characterizing Growth and Form of Fractal Cities with Allometric Scaling Exponents," Discrete Dynamics in Nature and Society, Hindawi, vol. 2010, pages 1-22, September.
    4. Benguigui, Lucien & Blumenfeld-Lieberthal, Efrat, 2007. "A dynamic model for city size distribution beyond Zipf's law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 613-627.
    5. Ramon Ferrer-i-Cancho & Brita Elvevåg, 2010. "Random Texts Do Not Exhibit the Real Zipf's Law-Like Rank Distribution," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-10, March.
    6. Gangopadhyay, Kausik & Basu, B., 2009. "City size distributions for India and China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2682-2688.
    7. M Ángeles Serrano & Alessandro Flammini & Filippo Menczer, 2009. "Modeling Statistical Properties of Written Text," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-8, April.
    8. Chen, Yanguang, 2012. "The rank-size scaling law and entropy-maximizing principle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 767-778.
    9. F. Semboloni, 2008. "Hierarchy, cities size distribution and Zipf's law," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 63(3), pages 295-301, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Zhijun & Jin, Wenxuan & Jiang, Guanghui & Li, Sichun & Ma, Wenqiu, 2021. "Typical and atypical multifractal systems of urban spaces—using construction land in Zhengzhou from 1988 to 2015 as an example," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiejing Wang & Yanguang Chen, 2021. "Economic Transition and the Evolution of City-Size Distribution of China’s Urban System," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    2. Chen, Yanguang, 2021. "Exploring the level of urbanization based on Zipf’s scaling exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    3. Chen, Yanguang, 2012. "The mathematical relationship between Zipf’s law and the hierarchical scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3285-3299.
    4. Chen, Yanguang & Wang, Jiejing, 2014. "Recursive subdivision of urban space and Zipf’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 392-404.
    5. Eduardo G Altmann & Janet B Pierrehumbert & Adilson E Motter, 2011. "Niche as a Determinant of Word Fate in Online Groups," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-12, May.
    6. Chen, Yanguang, 2015. "The distance-decay function of geographical gravity model: Power law or exponential law?," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 174-189.
    7. Kwong, Hok Shing & Nadarajah, Saralees, 2019. "A note on “Pareto tails and lognormal body of US cities size distribution”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 55-62.
    8. Cui, Xue-Mei & Yoon, Chang No & Youn, Hyejin & Lee, Sang Hoon & Jung, Jean S. & Han, Seung Kee, 2017. "Dynamic burstiness of word-occurrence and network modularity in textbook systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 103-110.
    9. Rafael González-Val, 2011. "Deviations from Zipf’s Law for American Cities," Urban Studies, Urban Studies Journal Limited, vol. 48(5), pages 1017-1035, April.
    10. Chen, Yanguang, 2016. "The evolution of Zipf’s law indicative of city development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 555-567.
    11. Chen, Yanguang, 2012. "The rank-size scaling law and entropy-maximizing principle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 767-778.
    12. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    13. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    14. Wang, Yuanjun & You, Shibing, 2016. "An alternative method for modeling the size distribution of top wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 443-453.
    15. Calderín-Ojeda, Enrique, 2016. "The distribution of all French communes: A composite parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 385-394.
    16. Nikolay K. Vitanov & Marcel Ausloos, 2015. "Test of two hypotheses explaining the size of populations in a system of cities," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2686-2693, December.
    17. Nan Dong & Xiaohuan Yang & Hongyan Cai & Liming Wang, 2015. "A Novel Method for Simulating Urban Population Potential Based on Urban Patches: A Case Study in Jiangsu Province, China," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    18. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    19. Yue Yang & Changgui Gu & Qin Xiao & Huijie Yang, 2017. "Evolution of scaling behaviors embedded in sentence series from A Story of the Stone," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-14, February.
    20. Fernando Rubiera-Morollón & Ignacio del Rosal & Alberto Díaz-Dapena, 2015. "Can large cities explain the aggregate movements of economies? Testing the ‘granular hypothesis’ for US counties," Letters in Spatial and Resource Sciences, Springer, vol. 8(2), pages 109-118, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:1:p:63-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.