IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v135y2020ics0960077920302666.html
   My bibliography  Save this article

Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19

Author

Listed:
  • Singh, Sarbjit
  • Parmar, Kulwinder Singh
  • Kumar, Jatinder
  • Makkhan, Sidhu Jitendra Singh

Abstract

Everywhere around the globe, the hot topic of discussion today is the ongoing and fast-spreading coronavirus disease (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Earlier detected in Wuhan, Hubei province, in China in December 2019, the deadly virus engulfed China and some neighboring countries, which claimed thousands of lives in February 2020. The proposed hybrid methodology involves the application of discreet wavelet decomposition to the dataset of deaths due to COVID-19, which splits the input data into component series and then applying an appropriate econometric model to each of the component series for making predictions of death cases in future. ARIMA models are well known econometric forecasting models capable of generating accurate forecasts when applied on wavelet decomposed time series. The input dataset consists of daily death cases from most affected five countries by COVID-19, which is given to the hybrid model for validation and to make one month ahead prediction of death cases. These predictions are compared with that obtained from an ARIMA model to estimate the performance of prediction. The predictions indicate a sharp rise in death cases despite various precautionary measures taken by governments of these countries.

Suggested Citation

  • Singh, Sarbjit & Parmar, Kulwinder Singh & Kumar, Jatinder & Makkhan, Sidhu Jitendra Singh, 2020. "Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920302666
    DOI: 10.1016/j.chaos.2020.109866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guerrero, Victor M., 1991. "ARIMA forecasts with restrictions derived from a structural change," International Journal of Forecasting, Elsevier, vol. 7(3), pages 339-347, November.
    2. Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
    3. Guy Melard & Jean-Michel Pasteels, 2000. "Automatic ARIMA modeling including interventions, using time series expert software," ULB Institutional Repository 2013/13744, ULB -- Universite Libre de Bruxelles.
    4. Ramsey, J.B., 2002. "Wavelets in Economics and Finance: Past and Future," Working Papers 02-02, C.V. Starr Center for Applied Economics, New York University.
    5. Melard, G. & Pasteels, J. -M., 2000. "Automatic ARIMA modeling including interventions, using time series expert software," International Journal of Forecasting, Elsevier, vol. 16(4), pages 497-508.
    6. Bianchi, Lisa & Jarrett, Jeffrey & Choudary Hanumara, R., 1998. "Improving forecasting for telemarketing centers by ARIMA modeling with intervention," International Journal of Forecasting, Elsevier, vol. 14(4), pages 497-504, December.
    7. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    2. María del Carmen Valls Martínez & Pedro Antonio Martín Cervantes, 2021. "Testing the Resilience of CSR Stocks during the COVID-19 Crisis: A Transcontinental Analysis," Mathematics, MDPI, vol. 9(5), pages 1-24, March.
    3. Ahmed N. K. Alfarra & Ahmed Hagag, 2022. "How Has the COVID-19 Pandemic Affected GDP Growth?-Empirical Study on USA and China-," Business, Management and Economics Research, Academic Research Publishing Group, vol. 8(3), pages 51-61, 09-2022.
    4. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Duan, Jiandong & Wang, Peng & Ma, Wentao & Tian, Xuan & Fang, Shuai & Cheng, Yulin & Chang, Ying & Liu, Haofan, 2021. "Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short -term memory neural network," Energy, Elsevier, vol. 214(C).
    6. Dinesh K. Sharma & H. S. Hota & Kate Brown & Richa Handa, 2022. "Integration of genetic algorithm with artificial neural network for stock market forecasting," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 828-841, June.
    7. Claudio Barbiellini Amidei & Ugo Fedeli & Nicola Gennaro & Laura Cestari & Elena Schievano & Manuel Zorzi & Paolo Girardi & Veronica Casotto, 2023. "Estimating Overall and Cause-Specific Excess Mortality during the COVID-19 Pandemic: Methodological Approaches Compared," IJERPH, MDPI, vol. 20(11), pages 1-13, May.
    8. Singh, Sarbjit & Parmar, Kulwinder Singh & Makkhan, Sidhu Jitendra Singh & Kaur, Jatinder & Peshoria, Shruti & Kumar, Jatinder, 2020. "Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Batistela, Cristiane M. & Correa, Diego P.F. & Bueno, Átila M & Piqueira, José Roberto C., 2021. "SIRSi compartmental model for COVID-19 pandemic with immunity loss," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Charu Arora & Poras Khetarpal & Saket Gupta & Nuzhat Fatema & Hasmat Malik & Asyraf Afthanorhan, 2023. "Mathematical Modelling to Predict the Effect of Vaccination on Delay and Rise of COVID-19 Cases Management," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    11. Duan, Huiming & Nie, Weige, 2022. "A novel grey model based on Susceptible Infected Recovered Model: A case study of COVD-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    12. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    13. Nathan Zavanelli, 2023. "Wavelet Analysis for Time Series Financial Signals via Element Analysis," Papers 2301.13255, arXiv.org.
    14. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    15. Daren Zhao & Huiwu Zhang & Qing Cao & Zhiyi Wang & Sizhang He & Minghua Zhou & Ruihua Zhang, 2022. "The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-18, February.
    16. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Aldila, Dipo, 2020. "Analyzing the impact of the media campaign and rapid testing for COVID-19 as an optimal control problem in East Java, Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Yeşilkanat, Cafer Mert, 2020. "Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    2. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    3. Ying Fan & Abdullah Yavas, 2023. "Price Dynamics in Public and Private Commercial Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 67(1), pages 150-190, July.
    4. Shalini, Velappan & Prasanna, Krishna, 2016. "Impact of the financial crisis on Indian commodity markets: Structural breaks and volatility dynamics," Energy Economics, Elsevier, vol. 53(C), pages 40-57.
    5. Garnier, Josselin & Solna, Knut, 2019. "Emergence of turbulent epochs in oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 281-292.
    6. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    7. Kaijian He & Kin Keung Lai & Guocheng Xiang, 2012. "Portfolio Value at Risk Estimate for Crude Oil Markets: A Multivariate Wavelet Denoising Approach," Energies, MDPI, vol. 5(4), pages 1-26, April.
    8. Josselin Garnier & Knut Solna, 2018. "Emergence of Turbulent Epochs in Oil Prices," Papers 1808.09382, arXiv.org, revised Apr 2019.
    9. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "U.S. shale oil production and WTI prices behaviour," Energy, Elsevier, vol. 141(C), pages 12-19.
    10. Marco Gallegati & Mauro Gallegati, 2005. "Wavelet variance and correlation analyses of output in G7 countries," Macroeconomics 0512017, University Library of Munich, Germany.
    11. Dimitrios Panagiotou & Athanassios Stavrakoudis, 2023. "Price dependence among the major EU extra virgin olive oil markets: a time scale analysis," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(1), pages 1-26, March.
    12. Fernandez, Viviana, 2007. "A postcard from the past: The behavior of U.S. stock markets during 1871–1938," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 267-282.
    13. Nigatu, Getachew & Adjemian, Michael K., 2016. "The U.S. Role in the Price Determination of Major Agricultural Commodities," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236045, Agricultural and Applied Economics Association.
    14. Mamadou-Diéne Diop & Jules Sadefo Kamdem, 2023. "Multiscale Agricultural Commodities Forecasting Using Wavelet-SARIMA Process," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 1-40, March.
    15. Chee Kian Leong & Weihong Huang, 2010. "Testing for spurious and cointegrated regressions: A wavelet approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(2), pages 215-233.
    16. Luca De Benedictis & Marco Gallegati, 2005. "Trade balance and terms of trade in U.S.: a time-scale decomposition analysis," International Trade 0512016, University Library of Munich, Germany.
    17. Bhuiyan, Rubaiyat Ahsan & Husain, Afzol & Zhang, Changyong, 2021. "A wavelet approach for causal relationship between bitcoin and conventional asset classes," Resources Policy, Elsevier, vol. 71(C).
    18. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    19. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    20. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:135:y:2020:i:c:s0960077920302666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.