IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v122y2019icp172-178.html
   My bibliography  Save this article

On predefined-time synchronisation of chaotic systems

Author

Listed:
  • Anguiano-Gijón, Carlos Alberto
  • Muñoz-Vázquez, Aldo Jonathan
  • Sánchez-Torres, Juan Diego
  • Romero-Galván, Gerardo
  • Martínez-Reyes, Fernando

Abstract

An active control Lyapunov-function design for predefined-time synchronisation of chaotic systems, based on the Lorenz attractor, is proposed in this paper. The proposed controller guarantees that before a known time, which is predefined during the control design, two chaotic systems are synchronised, enforcing a predefined-time sliding mode synchronisation. Numerical simulations are presented in order to show the reliability of the proposed method. Firstly, an application to secure communication is addressed, showing that, after the synchronisation is achieved, the exact message reconstruction is performed through a two-channel communication protocol, one channel for transmitting the message, and the other one for maintaining the synchronisation. An additional simulation case, about the synchronisation of two Rössler systems, is presented to show the applicability of the proposed scheme in a different chaotic system.

Suggested Citation

  • Anguiano-Gijón, Carlos Alberto & Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Romero-Galván, Gerardo & Martínez-Reyes, Fernando, 2019. "On predefined-time synchronisation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 172-178.
  • Handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:172-178
    DOI: 10.1016/j.chaos.2019.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mitra, Vramori & Solomon, Infant & Prakash, N. Hari & Sarma, Arun & Sarma, Bornali, 2017. "Complexity and onset of chaos control in a DC glow discharge magnetized plasma using all pass filter," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 613-621.
    2. Kocamaz, Uğur Erkin & Cevher, Barış & Uyaroğlu, Yılmaz, 2017. "Control and synchronization of chaos with sliding mode control based on cubic reaching rule," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 92-98.
    3. Ouannas, Adel & Odibat, Zaid & Hayat, Tasawar, 2017. "Fractional analysis of co-existence of some types of chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 215-223.
    4. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    5. Mukherjee, Somenath & Ray, Rajdeep & Samanta, Rajkumar & Khondekar, Mofazzal H. & Sanyal, Goutam, 2017. "Nonlinearity and chaos in wireless network traffic," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 23-29.
    6. Xu, Fei & Lai, Yongzeng & Shu, Xiao-Bao, 2018. "Chaos in integer order and fractional order financial systems and their synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 125-136.
    7. Durdu, Ali & Uyaroğlu, Yılmaz, 2017. "The Shortest Synchronization Time with Optimal Fractional Order Value Using a Novel Chaotic Attractor Based on Secure Communication," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 98-106.
    8. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    9. Shao, Hua & Shi, Yuming & Zhu, Hao, 2018. "On distributional chaos in non-autonomous discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 234-243.
    10. Messadi, M. & Mellit, A., 2017. "Control of chaos in an induction motor system with LMI predictive control and experimental circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 51-58.
    11. Park, Ju H., 2005. "Adaptive synchronization of Rossler system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 333-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yacine, Zedjiga & Hamiche, Hamid & Djennoune, Saïd & Mammar, Saïd, 2022. "Finite-time impulsive observers for nonlinear systems represented by Takagi–Sugeno models: Application to a chaotic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 321-352.
    2. Zhang, Mengjiao & Zang, Hongyan & Bai, Luyuan, 2022. "A new predefined-time sliding mode control scheme for synchronizing chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Assali, El Abed, 2021. "Predefined-time synchronization of chaotic systems with different dimensions and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    4. Luo, Runzi & Song, Zijun & Liu, Shuai, 2023. "Fixed-time observed synchronization of chaotic system with all state variables unavailable in some periods," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangpet, Teerawat & Kuntanapreeda, Suwat, 2020. "Finite-time synchronization of hyperchaotic systems based on feedback passivation," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Liu, Keshi & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2020. "Visibility graph analysis of Bitcoin price series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    3. Lin Cao & Rongwei Guo, 2022. "Partial Anti-Synchronization Problem of the 4D Financial Hyper-Chaotic System with Periodically External Disturbance," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    4. Lin, Jinchai & Fan, Ruguo & Tan, Xianchun & Zhu, Kaiwei, 2021. "Dynamic decision and coordination in a low-carbon supply chain considering the retailer's social preference," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    5. Runzi Luo & Jiaojiao Fu & Haipeng Su, 2019. "The Exponential Stabilization of a Class of n-D Chaotic Systems via the Exact Solution Method," Complexity, Hindawi, vol. 2019, pages 1-7, May.
    6. Telli, Şahin & Chen, Hongzhuan, 2021. "Multifractal behavior relationship between crypto markets and Wikipedia-Reddit online platforms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Telli, Şahin & Chen, Hongzhuan & Zhao, Xufeng, 2022. "Detecting multifractality and exposing distributions of local fluctuations: Detrended fluctuation analysis with descriptive statistics pooling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Nick James & Kevin Chin, 2021. "On the systemic nature of global inflation, its association with equity markets and financial portfolio implications," Papers 2111.11022, arXiv.org, revised Jan 2022.
    9. Ruan, Qingsong & Meng, Lu & Lv, Dayong, 2021. "Effect of introducing Bitcoin futures on the underlying Bitcoin market efficiency: A multifractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Soliman, Nancy S. & Tolba, Mohammed F. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2019. "Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 292-307.
    11. Li, Damei & Wu, Xiaoqun & Lu, Jun-an, 2009. "Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1290-1296.
    12. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    13. Alves, P.R.L., 2020. "Dynamic characteristic of Bitcoin cryptocurrency in the reconstruction scheme," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    14. Tutueva, Aleksandra & Moysis, Lazaros & Rybin, Vyacheslav & Zubarev, Alexander & Volos, Christos & Butusov, Denis, 2022. "Adaptive symmetry control in secure communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    15. Dutta, Maitreyee & Roy, Binoy Krishna, 2020. "A new fractional-order system displaying coexisting multiwing attractors; its synchronisation and circuit simulation," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    16. Soong, C.Y. & Huang, W.T. & Lin, F.P., 2007. "Chaos control on autonomous and non-autonomous systems with various types of genetic algorithm-optimized weak perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1519-1537.
    17. Lahmiri, Salim & Bekiros, Stelios & Bezzina, Frank, 2020. "Multi-fluctuation nonlinear patterns of European financial markets based on adaptive filtering with application to family business, green, Islamic, common stocks, and comparison with Bitcoin, NASDAQ, ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    18. Wang, Jian & Shao, Wei & Ma, Chenmin & Chen, Wenbing & Kim, Junseok, 2021. "Co-movements between Shanghai Composite Index and some fund sectors in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    20. Yu, Nanxiang & Zhu, Wei, 2021. "Event-triggered impulsive chaotic synchronization of fractional-order differential systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:172-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.