IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v95y2012icp45-49.html
   My bibliography  Save this article

Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings

Author

Listed:
  • Chung, William

Abstract

Benchmarking systems from a sample of reference buildings need to be developed to conduct benchmarking processes for the energy efficiency of commercial buildings. However, not all benchmarking systems can be adopted by public users (i.e., other non-reference building owners) because of the different methods in developing such systems.

Suggested Citation

  • Chung, William, 2012. "Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 95(C), pages 45-49.
  • Handle: RePEc:eee:appene:v:95:y:2012:i:c:p:45-49
    DOI: 10.1016/j.apenergy.2012.01.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.01.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
    2. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    3. Tanaka, Hideo & Hayashi, Isao & Watada, Junzo, 1989. "Possibilistic linear regression analysis for fuzzy data," European Journal of Operational Research, Elsevier, vol. 40(3), pages 389-396, June.
    4. Hojati, Mehran & Bector, C. R. & Smimou, Kamal, 2005. "A simple method for computation of fuzzy linear regression," European Journal of Operational Research, Elsevier, vol. 166(1), pages 172-184, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baldi, Simone & Michailidis, Iakovos & Ravanis, Christos & Kosmatopoulos, Elias B., 2015. "Model-based and model-free “plug-and-play” building energy efficient control," Applied Energy, Elsevier, vol. 154(C), pages 829-841.
    2. Moya, Diego & Torres, Roberto & Stegen, Sascha, 2016. "Analysis of the Ecuadorian energy audit practices: A review of energy efficiency promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 289-296.
    3. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    4. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    6. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    7. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    8. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Wang, Endong, 2015. "Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach," Applied Energy, Elsevier, vol. 146(C), pages 92-103.
    10. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    11. Papadopoulos, Sokratis & Kontokosta, Constantine E., 2019. "Grading buildings on energy performance using city benchmarking data," Applied Energy, Elsevier, vol. 233, pages 244-253.
    12. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Azadeh & Mohammad Sheikhalishahi & Ali Boostani, 2014. "A Flexible Neuro-Fuzzy Approach for Improvement of Seasonal Housing Price Estimation in Uncertain and Non-Linear Environments," South African Journal of Economics, Economic Society of South Africa, vol. 82(4), pages 567-582, December.
    2. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    4. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    5. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    6. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    7. Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
    8. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    9. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
    10. Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.
    11. AyÅŸe Tansu, 2022. "Fuzzy Regression Analysis with a proposed model," Technium, Technium Science, vol. 4(1), pages 250-273.
    12. Azadeh, A. & Khakestani, M. & Saberi, M., 2009. "A flexible fuzzy regression algorithm for forecasting oil consumption estimation," Energy Policy, Elsevier, vol. 37(12), pages 5567-5579, December.
    13. Pavel Škrabánek & Jaroslav Marek & Alena Pozdílková, 2021. "Boscovich Fuzzy Regression Line," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    14. Tang, Hong & Wang, Shengwei, 2021. "Energy flexibility quantification of grid-responsive buildings: Energy flexibility index and assessment of their effectiveness for applications," Energy, Elsevier, vol. 221(C).
    15. Moya, Diego & Torres, Roberto & Stegen, Sascha, 2016. "Analysis of the Ecuadorian energy audit practices: A review of energy efficiency promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 289-296.
    16. Shafaei Bajestani, Narges & Vahidian Kamyad, Ali & Nasli Esfahani, Ensieh & Zare, Assef, 2018. "Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model," European Journal of Operational Research, Elsevier, vol. 264(3), pages 859-869.
    17. Joudi, Ali & Svedung, Harald & Bales, Chris & Rönnelid, Mats, 2011. "Highly reflective coatings for interior and exterior steel cladding and the energy efficiency of buildings," Applied Energy, Elsevier, vol. 88(12), pages 4655-4666.
    18. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    19. Roth, Jonathan & Rajagopal, Ram, 2018. "Benchmarking building energy efficiency using quantile regression," Energy, Elsevier, vol. 152(C), pages 866-876.
    20. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:95:y:2012:i:c:p:45-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.