Advanced Search
MyIDEAS: Login to save this article or follow this journal

The use of Artificial Neural Network models for CO2 capture plants

Contents:

Author Info

  • Sipöcz, Nikolett
  • Tobiesen, Finn Andrew
  • Assadi, Mohsen
Registered author(s):

    Abstract

    Artificial Neural Networks (ANN) are multifaceted tools that can be used to model and predict various complex and highly non-linear processes. This paper presents the development and validation of an ANN model of a CO2 capture plant. An evaluation of the concept is made of the usefulness of the ANN model as well as a discussion of its feasibility for further integration into a conventional heat and mass balance programme. It is shown that the trained ANN model can reproduce the results of a rigorous process simulator in fraction of the simulation time. A multilayer feed-forward form of Artificial Neural Network was used to capture and model the non-linear relationship between inputs and outputs of the CO2 capture process. The data used for training and validation of the ANN were obtained using the process simulator CO2SIM. The ANN model was trained by performing fully automatic batch simulations using CO2SIM over the entire range of actual operation for an amine based absorption plant. The trained model was then used for finding the optimum operation for the example plant with respect to lowest possible specific steam duty and maximum CO2 capture rate. Two different algorithms have been used and compared for the training of the ANN and a sensitivity analysis was carried out to find the minimum number of input parameters needed while maintaining sufficient accuracy of the model. The reproducibility shows error less than 0.2% for the closed loop absorber/desorber plant. The results of this study show that trained ANN models are very useful for fast simulation of complex steady state process with high reproducibility of the rigorous model.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1T-524F69X-3/2/ffb1d9123968f777a6165055e340f90a
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 88 (2011)
    Issue (Month): 7 (July)
    Pages: 2368-2376

    as in new window
    Handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2368-2376

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    Related research

    Keywords: ANN CO2 capture Chemical absorption Levenberg-Marquardt Scaled Conjugate Gradient;

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Chen, Wei-Hsin & Chen, Shu-Mi & Hung, Chen-I, 2013. "Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach," Applied Energy, Elsevier, vol. 111(C), pages 731-741.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2368-2376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.