IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i9p1596-1605.html
   My bibliography  Save this article

A numerical simulation tool for predicting the impact of outdoor thermal environment on building energy performance

Author

Listed:
  • He, Jiang
  • Hoyano, Akira
  • Asawa, Takashi

Abstract

A building affects its surrounding environment, and conversely its indoor environment is influenced by its surroundings. In order to obtain a more accurate prediction of the indoor thermal environment, it is necessary to consider the interactions between the indoor and outdoor thermal environments. However, there is still a lack of numerical simulation tools available for predicting the interactions between indoor and outdoor microclimate that take into account the influences of outdoor spatial conditions (such as building forms and tree shapes) and various urban surface materials. This present paper presents a simulation tool for predicting the effect of outdoor thermal environment on building thermal performance (heating/cooling loads, indoor temperature) in an urban block consisting of several buildings, trees, and other structures. The simulation tool is a 3D CAD-based design tool, which makes it possible to reproduce the spatial forms of buildings and constructed surface materials in detail. The outdoor thermal environment is evaluated in terms of external surface temperature and mean radiant temperature (MRT). Simulated results of these temperatures can be visualized on a color 3D display. Building heating/cooling loads and indoor air temperature (internal surface temperature) can also be simulated. In this study, a simulation methodology is described, and a sensitivity analysis is conducted for a wooden detached house under different outdoor conditions (building coverage, adjacent building height, surrounding with trees or no-trees). Simulation results show that the simulation tool developed in this study is capable of quantifying the influences of outdoor configurations and surface materials on both indoor and outdoor environments.

Suggested Citation

  • He, Jiang & Hoyano, Akira & Asawa, Takashi, 2009. "A numerical simulation tool for predicting the impact of outdoor thermal environment on building energy performance," Applied Energy, Elsevier, vol. 86(9), pages 1596-1605, September.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1596-1605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00356-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kikegawa, Yukihiro & Genchi, Yutaka & Kondo, Hiroaki & Hanaki, Keisuke, 2006. "Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning," Applied Energy, Elsevier, vol. 83(6), pages 649-668, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    2. Rodrigues, Eugénio & Fernandes, Marco S. & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Costa, José J., 2019. "Performance-based design of multi-story buildings for a sustainable urban environment: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Yanxue Li & Dawei Wang & Shanshan Li & Weijun Gao, 2021. "Impact Analysis of Urban Morphology on Residential District Heat Energy Demand and Microclimate Based on Field Measurement Data," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    4. Sorrentino, Marco & Rizzo, Gianfranco & Genova, Fernando & Gaspardone, Marco, 2010. "A model for simulation and optimal energy management of Telecom switching plants," Applied Energy, Elsevier, vol. 87(1), pages 259-267, January.
    5. Kiluk, S., 2014. "Dynamic classification system in large-scale supervision of energy efficiency in buildings," Applied Energy, Elsevier, vol. 132(C), pages 1-14.
    6. Maria Alejandra Del Rio & Takashi Asawa & Yukari Hirayama, 2020. "Modeling and Validation of the Cool Summer Microclimate Formed by Passive Cooling Elements in a Semi-Outdoor Building Space," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    7. Fonseca Diaz, Néstor, 2011. "Modeling of a hydronic ceiling system and its environment as energetic auditing tool," Applied Energy, Elsevier, vol. 88(3), pages 636-649, March.
    8. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    9. Tian, Wei & Liu, Yunliang & Heo, Yeonsook & Yan, Da & Li, Zhanyong & An, Jingjing & Yang, Song, 2016. "Relative importance of factors influencing building energy in urban environment," Energy, Elsevier, vol. 111(C), pages 237-250.
    10. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    11. Audi, Marc & Ali, Amjad, 2018. "Determinants of Environmental Degradation under the Perspective of Globalization: A Panel Analysis of Selected MENA Nations," MPRA Paper 85776, University Library of Munich, Germany.
    12. Ascione, Fabrizio & Bianco, Nicola & Rossi, Filippo de’ & Turni, Gianluca & Vanoli, Giuseppe Peter, 2012. "Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates," Applied Energy, Elsevier, vol. 97(C), pages 405-418.
    13. Ruoning Chen & Xue-yi You, 2020. "Reduction of urban heat island and associated greenhouse gas emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 689-711, April.
    14. Borreguero, Ana M. & Luz Sánchez, M. & Valverde, José Luis & Carmona, Manuel & Rodríguez, Juan F., 2011. "Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content," Applied Energy, Elsevier, vol. 88(3), pages 930-937, March.
    15. Kiluk, Sebastian, 2012. "Algorithmic acquisition of diagnostic patterns in district heating billing system," Applied Energy, Elsevier, vol. 91(1), pages 146-155.
    16. Sukjin Jung & Seonghwan Yoon, 2017. "Deduction of Optimum Surface Design Factors for Enhancement of Outdoor Thermal Environment in a Micro-Scale Unit," Sustainability, MDPI, vol. 9(8), pages 1-26, August.
    17. Sukjin Jung & Seonghwan Yoon, 2015. "Changes in Sunlight and Outdoor Thermal Environment Conditions Based on the Layout Plan of Flat Type Apartment Houses," Energies, MDPI, vol. 8(9), pages 1-18, August.
    18. Paola Iodice & Nicola Massarotti & Alessandro Mauro, 2016. "Effects of Inhomogeneities on Heat and Mass Transport Phenomena in Thermal Bridges," Energies, MDPI, vol. 9(3), pages 1-21, February.
    19. Olofsson, Thomas & Mahlia, T.M.I., 2012. "Modeling and simulation of the energy use in an occupied residential building in cold climate," Applied Energy, Elsevier, vol. 91(1), pages 432-438.
    20. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    21. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    22. Han, Yilong & Taylor, John E. & Pisello, Anna Laura, 2017. "Exploring mutual shading and mutual reflection inter-building effects on building energy performance," Applied Energy, Elsevier, vol. 185(P2), pages 1556-1564.
    23. Omar, M.N. & Taha, A.T. & Samak, A.A. & Keshek, M.H. & Gomaa, E.M. & Elsisi, S.F., 2021. "Simulation and validation model of cooling greenhouse by solar energy (P V) integrated with painting its cover and its effect on the cucumber production," Renewable Energy, Elsevier, vol. 172(C), pages 1154-1173.
    24. Verbai, Zoltán & Kocsis, Imre & Kalmár, Ferenc, 2015. "Outdoor dry bulb heating design temperatures for Hungary," Energy, Elsevier, vol. 93(P2), pages 1404-1412.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    2. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    3. Angeles Campos-Osorio & Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Gonzalo Bojórquez-Morales, 2020. "Energy and Environmental Comparison between a Concrete Wall with and without a Living Green Wall: A Case Study in Mexicali, Mexico," Sustainability, MDPI, vol. 12(13), pages 1-10, June.
    4. Tayyebi, Amin & Shafizadeh-Moghadam, Hossein & Tayyebi, Amir H., 2018. "Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran," Land Use Policy, Elsevier, vol. 71(C), pages 459-469.
    5. Fabiani, C. & Castaldo, V.L. & Pisello, A.L., 2020. "Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building," Applied Energy, Elsevier, vol. 262(C).
    6. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    7. Néstor Santillán-Soto & O. Rafael García-Cueto & Alejandro A. Lambert-Arista & Sara Ojeda-Benítez & Samantha E. Cruz-Sotelo, 2019. "Comparative Analysis of Two Urban Microclimates: Energy Consumption and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 11(7), pages 1-11, April.
    8. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    9. Ihara, Tomohiko & Kikegawa, Yukihiro & Asahi, Kazutake & Genchi, Yutaka & Kondo, Hiroaki, 2008. "Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures," Applied Energy, Elsevier, vol. 85(1), pages 12-25, January.
    10. Hongyu Du & Fengqi Zhou & Chunlan Li & Wenbo Cai & Hong Jiang & Yongli Cai, 2020. "Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization, a Case Study of Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    11. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    12. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    13. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    14. Karin Lundgren & Tord Kjellstrom, 2013. "Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas," Sustainability, MDPI, vol. 5(7), pages 1-13, July.
    15. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    16. Lin, Jinyao & Lu, Siyan & He, Xiaoyu & Wang, Fang, 2021. "Analyzing the impact of three-dimensional building structure on CO2 emissions based on random forest regression," Energy, Elsevier, vol. 236(C).
    17. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    18. Dong-Hyeon Kim & Byeong-Il Ahn & Eui-Gyeong Kim, 2016. "Metropolitan Residents’ Preferences and Willingness to Pay for a Life Zone Forest for Mitigating Heat Island Effects during Summer Season in Korea," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    19. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    20. Tremeac, Brice & Bousquet, Pierre & de Munck, Cecile & Pigeon, Gregoire & Masson, Valery & Marchadier, Colette & Merchat, Michele & Poeuf, Pierre & Meunier, Francis, 2012. "Influence of air conditioning management on heat island in Paris air street temperatures," Applied Energy, Elsevier, vol. 95(C), pages 102-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:9:p:1596-1605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.