IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i2p219-229.html
   My bibliography  Save this article

How polygeneration schemes may develop under an advanced clean fossil fuel strategy under a joint sino-European initiative

Author

Listed:
  • Hetland, Jens
  • Zheng, Li
  • Shisen, Xu

Abstract

In this article the prospect of emerging co-production and polygeneration schemes based on pre-combustion decarbonisation and options for geological storage of the CO2 are discussed in a European and Chinese setting. Reference is made to European and Chinese undertakings - especially the COACH project1 that is being conducted under the auspices of the European Commission. COACH is based on principles lined up by the EU-based DYNAMIS2 project with reference to options for decarbonising fossil fuels within a more sustainable framework.

Suggested Citation

  • Hetland, Jens & Zheng, Li & Shisen, Xu, 2009. "How polygeneration schemes may develop under an advanced clean fossil fuel strategy under a joint sino-European initiative," Applied Energy, Elsevier, vol. 86(2), pages 219-229, February.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:2:p:219-229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00070-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    2. Huang, Bin & Xu, Shisen & Gao, Shiwang & Liu, Lianbo & Tao, Jiye & Niu, Hongwei & Cai, Ming & Cheng, Jian, 2010. "Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station," Applied Energy, Elsevier, vol. 87(11), pages 3347-3354, November.
    3. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    4. Liu, Guang-jian & Li, Zheng & Wang, Ming-hua & Ni, Wei-dou, 2010. "Energy savings by co-production: A methanol/electricity case study," Applied Energy, Elsevier, vol. 87(9), pages 2854-2859, September.
    5. Zhang, Jianyun & Liu, Pei & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2014. "A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system," Applied Energy, Elsevier, vol. 114(C), pages 146-154.
    6. Wu, Handong & Gao, Lin & Jin, Hongguang & Li, Sheng, 2017. "Low-energy-penalty principles of CO2 capture in polygeneration systems," Applied Energy, Elsevier, vol. 203(C), pages 571-581.
    7. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
    8. Rasul, M.G. & Moazzem, S. & Khan, M.M.K., 2014. "Performance assessment of carbonation process integrated with coal fired power plant to reduce CO2 (carbon dioxide) emissions," Energy, Elsevier, vol. 64(C), pages 330-341.
    9. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    10. Mokhtar, Marwan & Ali, Muhammad Tauha & Khalilpour, Rajab & Abbas, Ali & Shah, Nilay & Hajaj, Ahmed Al & Armstrong, Peter & Chiesa, Matteo & Sgouridis, Sgouris, 2012. "Solar-assisted Post-combustion Carbon Capture feasibility study," Applied Energy, Elsevier, vol. 92(C), pages 668-676.
    11. Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
    12. Galanti, Leandro & Franzoni, Alessandro & Traverso, Alberto & Massardo, Aristide F., 2011. "Existing large steam power plant upgraded for hydrogen production," Applied Energy, Elsevier, vol. 88(5), pages 1510-1518, May.
    13. Qian, Yu & Liu, Jingyao & Huang, Zhixian & Kraslawski, Andrzej & Cui, Jian & Huang, Yinlun, 2009. "Conceptual design and system analysis of a poly-generation system for power and olefin production from natural gas," Applied Energy, Elsevier, vol. 86(10), pages 2088-2095, October.
    14. Piacentino, Antonio & Barbaro, Chiara, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part II: Analysis of the applicative potential," Applied Energy, Elsevier, vol. 111(C), pages 1222-1238.
    15. Hoffmann, Bettina Susanne & Szklo, Alexandre, 2011. "Integrated gasification combined cycle and carbon capture: A risky option to mitigate CO2 emissions of coal-fired power plants," Applied Energy, Elsevier, vol. 88(11), pages 3917-3929.
    16. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:2:p:219-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.