IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2007i5p542-552.html
   My bibliography  Save this article

Seasonal autoregressive modelling of water and fuel consumptions in buildings

Author

Listed:
  • Lowry, Gordon
  • Bianeyin, Felix U.
  • Shah, Nirav

Abstract

In order to account for variations in the performances of buildings, it is necessary to construct explanatory models of water and energy consumptions. In this paper, a modelling approach is illustrated for those parts of the variances in consumptions of water and energy that are neglected in conventional monitoring and targeting procedures. It is shown that these parts of the consumption variance need not be random and that identifying an autoregressive component can generate better models. Additionally, conventional procedures do not exploit the seasonality that is common in many buildings. Such improved models permit the more reliable detection of significant changes in a building's performance, and more accurate estimations of the effects of changes, whether the result of plant faults or operator intervention.

Suggested Citation

  • Lowry, Gordon & Bianeyin, Felix U. & Shah, Nirav, 2007. "Seasonal autoregressive modelling of water and fuel consumptions in buildings," Applied Energy, Elsevier, vol. 84(5), pages 542-552, May.
  • Handle: RePEc:eee:appene:v:84:y:2007:i:5:p:542-552
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(06)00026-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozturk, Harun Kemal & Ceylan, Halim & Canyurt, Olcay Ersel & Hepbasli, Arif, 2005. "Electricity estimation using genetic algorithm approach: a case study of Turkey," Energy, Elsevier, vol. 30(7), pages 1003-1012.
    2. Gonzales Chavez, S & Xiberta Bernat, J & Llaneza Coalla, H, 1999. "Forecasting of energy production and consumption in Asturias (northern Spain)," Energy, Elsevier, vol. 24(3), pages 183-198.
    3. M. Froukh, 2001. "Decision-Support System for Domestic Water Demand Forecasting and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(6), pages 363-382, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wong, L.T. & Mui, K.W. & Guan, Y., 2010. "Shower water heat recovery in high-rise residential buildings of Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 703-709, February.
    2. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
    3. Newsham, Guy R. & Birt, Benjamin J. & Rowlands, Ian H., 2011. "A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use," Energy Policy, Elsevier, vol. 39(10), pages 6376-6389, October.
    4. Huyghues-Beaufond, Nathalie & Tindemans, Simon & Falugi, Paola & Sun, Mingyang & Strbac, Goran, 2020. "Robust and automatic data cleansing method for short-term load forecasting of distribution feeders," Applied Energy, Elsevier, vol. 261(C).
    5. Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    3. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    4. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    5. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
    6. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    7. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60, February.
    8. Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
    9. Haldenbilen, Soner, 2006. "Fuel price determination in transportation sector using predicted energy and transport demand," Energy Policy, Elsevier, vol. 34(17), pages 3078-3086, November.
    10. Erdogdu, Erkan, 2007. "Regulatory reform in Turkish energy industry: An analysis," Energy Policy, Elsevier, vol. 35(2), pages 984-993, February.
    11. Erdogdu, Erkan, 2007. "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
    12. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    13. Askarzadeh, Alireza, 2014. "Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran," Energy, Elsevier, vol. 72(C), pages 484-491.
    14. Mahmut Firat & Mehmet Yurdusev & Mustafa Turan, 2009. "Evaluation of Artificial Neural Network Techniques for Municipal Water Consumption Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 617-632, March.
    15. Erdogdu, Erkan, 2010. "Natural gas demand in Turkey," Applied Energy, Elsevier, vol. 87(1), pages 211-219, January.
    16. Edy Fradinata & Sakesun Suthummanon & Wannarat Suntiamorntut, 2015. "Forecasting Determinant of Cement Demand in Indonesia with Artificial Neural Network," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 5(7), pages 373-384, July.
    17. Badurally Adam, N.R. & Elahee, M.K. & Dauhoo, M.Z., 2011. "Forecasting of peak electricity demand in Mauritius using the non-homogeneous Gompertz diffusion process," Energy, Elsevier, vol. 36(12), pages 6763-6769.
    18. Rae-Jun Park & Kyung-Bin Song & Bo-Sung Kwon, 2020. "Short-Term Load Forecasting Algorithm Using a Similar Day Selection Method Based on Reinforcement Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.
    19. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    20. M. Yurdusev & P. O'connell, 2005. "Environmentally-Sensitive Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(4), pages 375-397, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2007:i:5:p:542-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.