IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v356y2024ics0306261923018044.html
   My bibliography  Save this article

Analysing seven decades of global wave power trends: The impact of prolonged ocean warming

Author

Listed:
  • Chen, Wei-Bo

Abstract

Wave power results from converting wind energy into kinetic energy on the ocean's surface. Alterations in long-term ocean surface waves can have significant consequences for coastal regions, including erosion and an elevated risk of flooding. Our research has unveiled a discernible and escalating trend in several crucial oceanic parameters, encompassing sea-surface temperature (SST), 10-m wind speed (W10), and significant wave height (SWH), both on a global and regional scale. Importantly, we have established statistically substantial relationships between SST and W10 and W10 and SWH. Moreover, our analysis has revealed a temporal lag of one year in the cross-correlation between SST and W10, while no such temporal offset is evident between W10 and SWH. Significantly, our investigation has provided evidence that global wave power (WP) has exhibited an annual increase of 0.54% over the comprehensive 70-year period from 1951 to 2020. This upward trajectory can be primarily attributed to the phenomenon of upper-ocean warming, which serves to enhance W10. Specifically, when SST exceeds the 70-year average by 1 °C (1951–2020), a corresponding global increase of 0.8 m/s in W10 is observed. This elevation in W10, in turn, results in a 0.5 m increase in SWH, ultimately culminating in a substantial 32.8 kW/m boost in WP. Our comprehensive analysis of the 70-year dataset underscores the predominant role played by the oceanic region situated between latitudes 30°S and 60°S, contributing a substantial 52.3% share to global WP. Closely following is the South Pacific region, contributing 28.3% to the cumulative WP, followed by the South Atlantic (23.3%), the Indian Ocean (15.1%), and the North Atlantic and North Pacific regions, each contributing approximately 9.6% and 9.3%, respectively. The findings derived from our study cast a spotlight on the intensification of W10, the amplification of SWH, and the significant escalation in WP since the 1970s. These trends are intrinsically linked to the phenomenon of upper-ocean warming. Importantly, they portend a scenario in which the world's oceans will manifest even greater energy levels should current warming trends continue unabated.

Suggested Citation

  • Chen, Wei-Bo, 2024. "Analysing seven decades of global wave power trends: The impact of prolonged ocean warming," Applied Energy, Elsevier, vol. 356(C).
  • Handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923018044
    DOI: 10.1016/j.apenergy.2023.122440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Wen-Ray & Chen, Hongey & Chen, Wei-Bo & Chang, Chih-Hsin & Lin, Lee-Yaw & Jang, Jiun-Huei & Yu, Yi-Chiang, 2018. "Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan," Renewable Energy, Elsevier, vol. 118(C), pages 814-824.
    2. Reguero, B.G. & Losada, I.J. & Méndez, F.J., 2015. "A global wave power resource and its seasonal, interannual and long-term variability," Applied Energy, Elsevier, vol. 148(C), pages 366-380.
    3. Liang, Bingchen & Shao, Zhuxiao & Wu, Guoxiang & Shao, Meng & Sun, Jinwei, 2017. "New equations of wave energy assessment accounting for the water depth," Applied Energy, Elsevier, vol. 188(C), pages 130-139.
    4. Angélique Melet & Benoit Meyssignac & Rafael Almar & Gonéri Le Cozannet, 2018. "Under-estimated wave contribution to coastal sea-level rise," Nature Climate Change, Nature, vol. 8(3), pages 234-239, March.
    5. Shih-Chun Hsiao & Chao-Tzuen Cheng & Tzu-Yin Chang & Wei-Bo Chen & Han-Lun Wu & Jiun-Huei Jang & Lee-Yaw Lin, 2021. "Assessment of Offshore Wave Energy Resources in Taiwan Using Long-Term Dynamically Downscaled Winds from a Third-Generation Reanalysis Product," Energies, MDPI, vol. 14(3), pages 1-25, January.
    6. Zheng, Chong Wei & Li, Chong Yin, 2015. "Variation of the wave energy and significant wave height in the China Sea and adjacent waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 381-387.
    7. Angélique Melet & Benoit Meyssignac & Rafael Almar & Gonéri Cozannet, 2018. "Author Correction: Under-estimated wave contribution to coastal sea-level rise," Nature Climate Change, Nature, vol. 8(9), pages 840-840, September.
    8. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
    9. Ceridwen I. Fraser & Adele K. Morrison & Andrew McC Hogg & Erasmo C. Macaya & Erik van Sebille & Peter G. Ryan & Amanda Padovan & Cameron Jack & Nelson Valdivia & Jonathan M. Waters, 2018. "Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming," Nature Climate Change, Nature, vol. 8(8), pages 704-708, August.
    10. Borja G. Reguero & Iñigo J. Losada & Fernando J. Méndez, 2019. "A recent increase in global wave power as a consequence of oceanic warming," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    11. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    12. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    13. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jin & Meucci, Alberto & Liu, Qingxiang & Babanin, Alexander V. & Ierodiaconou, Daniel & Xu, Xingkun & Young, Ian R., 2023. "A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 215(C).
    2. Shih-Chun Hsiao & Chao-Tzuen Cheng & Tzu-Yin Chang & Wei-Bo Chen & Han-Lun Wu & Jiun-Huei Jang & Lee-Yaw Lin, 2021. "Assessment of Offshore Wave Energy Resources in Taiwan Using Long-Term Dynamically Downscaled Winds from a Third-Generation Reanalysis Product," Energies, MDPI, vol. 14(3), pages 1-25, January.
    3. Sun, Peidong & Wang, Jichao, 2024. "Long-term variability analysis of wave energy resources and its impact on wave energy converters along the Chinese coastline," Energy, Elsevier, vol. 288(C).
    4. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    5. Ahn, Seongho & Neary, Vincent S. & Haas, Kevin A., 2022. "Global wave energy resource classification system for regional energy planning and project development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Penalba, Markel & Ulazia, Alain & Saénz, Jon & Ringwood, John V., 2020. "Impact of long-term resource variations on wave energy Farms: The Icelandic case," Energy, Elsevier, vol. 192(C).
    7. Ulazia, Alain & Saenz-Aguirre, Aitor & Ibarra-Berastegui, Gabriel & Sáenz, Jon & Carreno-Madinabeitia, Sheila & Esnaola, Ganix, 2023. "Performance variations of wave energy converters due to global long-term wave period change (1900–2010)," Energy, Elsevier, vol. 268(C).
    8. Chen, Y.-L. & Lin, C.-C. & Chen, J.-H. & Lee, Y.-H. & Tzang, S.-Y., 2023. "Characteristics of wave energy resources on coastal waters of northeast Taiwan," Renewable Energy, Elsevier, vol. 202(C), pages 1-16.
    9. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
    10. Martinez, A. & Iglesias, G., 2020. "Wave exploitability index and wave resource classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Sun, Ze & Zhang, Haicheng & Liu, Xiaolong & Ding, Jun & Xu, Daolin & Cai, Zhiwen, 2021. "Wave energy assessment of the Xisha Group Islands zone for the period 2010–2019," Energy, Elsevier, vol. 220(C).
    12. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    13. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    14. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    15. Simon Krüner & Christoph M. Hackl, 2022. "Nonlinear Modelling and Control of a Power Smoothing System for a Novel Wave Energy Converter Prototype," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    16. Neary, Vincent S. & Ahn, Seongho, 2023. "Global atlas of extreme significant wave heights and relative risk ratios," Renewable Energy, Elsevier, vol. 208(C), pages 130-140.
    17. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    18. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    19. Ahn, Seongho & Neary, Vincent S. & Allahdadi, Mohammad Nabi & He, Ruoying, 2021. "Nearshore wave energy resource characterization along the East Coast of the United States," Renewable Energy, Elsevier, vol. 172(C), pages 1212-1224.
    20. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s0306261923018044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.