IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015520.html
   My bibliography  Save this article

A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning

Author

Listed:
  • Deng, Xiangtian
  • Zhang, Yi
  • Jiang, Yi
  • Zhang, Yi
  • Qi, He

Abstract

Reducing carbon emissions has been a focus problem with the rapidly increasing building energy consumption. One solution is adopting more Renewable Energy Resources (RESs) for building energy supply. To overcome the intermittence of RESs, researchers paid efforts in flexible demand response based on centralized operation and model-based control, however, which get challenges for scalability and uncertain dynamic building systems. Moreover, few works have considered user willingness as an important part of human–machine interaction and user satisfaction. Thus, we propose a novel operation method called DC-RL for renewable building energy systems. DC-RL designs a distributed DC energy system, which is scalable, control-friendly, and provides users the willingness option for flexible operation. For energy control, DC-RL adopts a model-free deep reinforcement learning (DRL) algorithm Soft-Actor-Critic (SAC) to adjust demand to matching renewable supply with maintaining user satisfaction. We evaluate DC-RL on two real-life datasets. Compared to baselines, DC-RL improves energy saving and PV self-consumption by 38% and user satisfaction by 9%. DC-RL achieves near-zero-carbon buildings with 93% self-sufficiency rate and reduces up to 33% of battery dependency.

Suggested Citation

  • Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015520
    DOI: 10.1016/j.apenergy.2023.122188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015520
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-agent reinforcement learning dealing with hybrid action spaces: A case study for off-grid oriented renewable building energy system," Applied Energy, Elsevier, vol. 326(C).
    2. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    3. Ferahtia, Seydali & Djeroui, Ali & Rezk, Hegazy & Houari, Azeddine & Zeghlache, Samir & Machmoum, Mohamed, 2022. "Optimal control and implementation of energy management strategy for a DC microgrid," Energy, Elsevier, vol. 238(PB).
    4. Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Operational optimization for off-grid renewable building energy system using deep reinforcement learning," Applied Energy, Elsevier, vol. 325(C).
    5. Jin, Yuhui & Wu, Xiao & Shen, Jiong, 2022. "Power-heat coordinated control of multiple energy system for off-grid energy supply using multi-timescale distributed predictive control," Energy, Elsevier, vol. 254(PB).
    6. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    7. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Qin, Yanbo & Zhang, Jing & Tang, Saiqiu & Wang, Yuwei & Liu, Yan & Zhou, Lin, 2023. "Flexibility improvement and stochastic multi-scenario hybrid optimization for an integrated energy system with high-proportion renewable energy," Energy, Elsevier, vol. 263(PB).
    8. Boccalatte, A. & Fossa, M. & Ménézo, C., 2020. "Best arrangement of BIPV surfaces for future NZEB districts while considering urban heat island effects and the reduction of reflected radiation from solar façades," Renewable Energy, Elsevier, vol. 160(C), pages 686-697.
    9. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    10. Ahmad, Ashfaq & Khan, Jamil Yusuf, 2020. "Real-Time Load Scheduling, Energy Storage Control and Comfort Management for Grid-Connected Solar Integrated Smart Buildings," Applied Energy, Elsevier, vol. 259(C).
    11. Ferahtia, Seydali & Rezk, Hegazy & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm," Applied Energy, Elsevier, vol. 306(PB).
    12. Bay, Christopher J. & Chintala, Rohit & Chinde, Venkatesh & King, Jennifer, 2022. "Distributed model predictive control for coordinated, grid-interactive buildings," Applied Energy, Elsevier, vol. 312(C).
    13. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    2. Hegazy Rezk & Rania M. Ghoniem & Seydali Ferahtia & Ahmed Fathy & Mohamed M. Ghoniem & Reem Alkanhel, 2022. "A Comparison of Different Renewable-Based DC Microgrid Energy Management Strategies for Commercial Buildings Applications," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    3. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "Energy saving and indoor temperature control for an office building using tube-based robust model predictive control," Applied Energy, Elsevier, vol. 341(C).
    4. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2022. "Economic model predictive control of integrated energy systems: A multi-time-scale framework," Applied Energy, Elsevier, vol. 328(C).
    5. Yang, Sheng & Liu, Beilin & Li, Xiaolong & Liu, Zhiqiang & Liu, Yue & Xie, Nan & Ren, Jingzheng, 2023. "Flexibility index for a distributed energy system design optimization," Renewable Energy, Elsevier, vol. 219(P1).
    6. Wenya Xu & Yanxue Li & Guanjie He & Yang Xu & Weijun Gao, 2023. "Performance Assessment and Comparative Analysis of Photovoltaic-Battery System Scheduling in an Existing Zero-Energy House Based on Reinforcement Learning Control," Energies, MDPI, vol. 16(13), pages 1-19, June.
    7. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    8. Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
    9. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    10. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    11. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    12. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    13. Sameh Monna & Adel Juaidi & Ramez Abdallah & Aiman Albatayneh & Patrick Dutournie & Mejdi Jeguirim, 2021. "Towards Sustainable Energy Retrofitting, a Simulation for Potential Energy Use Reduction in Residential Buildings in Palestine," Energies, MDPI, vol. 14(13), pages 1-13, June.
    14. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    15. Akimoto, Youhei & Auger, Anne & Hansen, Nikolaus, 2022. "An ODE method to prove the geometric convergence of adaptive stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 269-307.
    16. Anastasia Spiliopoulou & Ioannis Papamichail & Markos Papageorgiou & Yannis Tyrinopoulos & John Chrysoulakis, 2017. "Macroscopic traffic flow model calibration using different optimization algorithms," Operational Research, Springer, vol. 17(1), pages 145-164, April.
    17. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    18. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    19. Zhang, Yali & Shang, Pengjian, 2019. "Multivariate multiscale distribution entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 72-80.
    20. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.