IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs030626192301509x.html
   My bibliography  Save this article

Theoretical, CFD modelling and experimental investigation of a four-intersecting-vane rotary expander

Author

Listed:
  • Murthy, Anarghya Ananda
  • Krishan, Gopal
  • Shenoy, Praveen
  • Patil, Ishwaragouda S

Abstract

Expansion devices significantly impact the performance of the Vapor Compression Refrigeration system and Organic Rankine Cycles. Its improvement has been identified as one of the most crucial parts of future studies. The experiments were carried out using an improved experimental rig with direct coupling of the prototype and the dynamometer. This is done to correct any misalignments caused by external forces. The internal pressure in the working chambers was measured using six pressure transducers at various locations on the expander. A three-dimensional computational fluid dynamics and theoretical model was developed to investigate the effect of losses and inherent physical processes on the prototype. The actual geometry of the stator is taken in the computational fluid dynamics model. Conversely, employing the equation for an irregular stator shape in the theoretical model is difficult. Therefore, a circular stator is considered. The experimental results were used to validate the developed models. The prototype was tested up to 1550 rpm rotating speed, 5 bar (abs) suction pressure, and 1 bar discharge pressure (abs). The computational fluid dynamics and theoretical model results showed that though the volumetric and adiabatic efficiency was generally overpredicted, the trends were very closely predicted. The computational fluid dynamics and the theoretical model could predict the volumetric and adiabatic efficiency with a variance of <19.5% and 14.7%, respectively, for most of the experimental data points.

Suggested Citation

  • Murthy, Anarghya Ananda & Krishan, Gopal & Shenoy, Praveen & Patil, Ishwaragouda S, 2024. "Theoretical, CFD modelling and experimental investigation of a four-intersecting-vane rotary expander," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s030626192301509x
    DOI: 10.1016/j.apenergy.2023.122145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301509X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2020. "CFD modelling of small scale ORC scroll expanders using variable wall thicknesses," Energy, Elsevier, vol. 199(C).
    2. Badr, O. & Probert, S.D. & O'Callaghan, P., 1985. "Performances of multi-vane expanders," Applied Energy, Elsevier, vol. 20(3), pages 207-234.
    3. Zhang, Xinjing & Xu, Yujie & Xu, Jian & Sheng, Yong & Zuo, Zhitao & Liu, Jimin & Chen, Haisheng & Wang, Yaodong & Huang, Ye, 2017. "Study on the performance and optimization of a scroll expander driven by compressed air," Applied Energy, Elsevier, vol. 186(P3), pages 347-358.
    4. Hu, Jing & Li, Minxia & Zhao, Li & Xia, Borui & Ma, Yitai, 2015. "Improvement and experimental research of CO2 two-rolling piston expander," Energy, Elsevier, vol. 93(P2), pages 2199-2207.
    5. Yap, Ken Shaun & Ooi, Kim Tiow & Chakraborty, Anutosh, 2018. "Analysis of the novel cross vane expander-compressor: Mathematical modelling and experimental study," Energy, Elsevier, vol. 145(C), pages 626-637.
    6. Qin, Zhaoju & Jia, Minghui & Yang, Huadong, 2020. "Study on vortex characteristics and velocity distribution in small rotary engine," Energy, Elsevier, vol. 206(C).
    7. Badr, O. & O'Callaghan, P.W. & Probert, S.D., 1985. "Multi-vane expander performance: Breathing characteristics," Applied Energy, Elsevier, vol. 19(4), pages 241-271.
    8. Ahamed, J.U. & Saidur, R. & Masjuki, H.H., 2011. "A review on exergy analysis of vapor compression refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1593-1600, April.
    9. Badr, O. & O'Callaghan, P. W. & Hussein, M. & Probert, S. D., 1984. "Multi-vane expanders as prime movers for low-grade energy organic Rankine-cycle engines," Applied Energy, Elsevier, vol. 16(2), pages 129-146.
    10. Badr, O. & O'Callaghan, P.W. & Probert, S.D., 1985. "Multi-vane expanders: Geometry and vane kinematics," Applied Energy, Elsevier, vol. 19(3), pages 159-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Przemysław Błasiak & Piotr Kolasiński & Sindu Daniarta, 2023. "Numerical Analysis of Heat Transfer within a Rotary Multi-Vane Expander," Energies, MDPI, vol. 16(6), pages 1-32, March.
    2. Piotr Kolasiński, 2019. "Application of the Multi-Vane Expanders in ORC Systems—A Review on the Experimental and Modeling Research Activities," Energies, MDPI, vol. 12(15), pages 1-26, August.
    3. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    4. Vodicka, Vaclav & Novotny, Vaclav & Zeleny, Zbynek & Mascuch, Jakub & Kolovratnik, Michal, 2019. "Theoretical and experimental investigations on the radial and axial leakages within a rotary vane expander," Energy, Elsevier, vol. 189(C).
    5. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    6. Gao, Yu & He, Guogeng & Cai, Dehua & Fan, Mingjing, 2020. "Performance evaluation of a modified R290 dual-evaporator refrigeration cycle using two-phase ejector as expansion device," Energy, Elsevier, vol. 212(C).
    7. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    8. Pantano, Fabio & Capata, Roberto, 2017. "Expander selection for an on board ORC energy recovery system," Energy, Elsevier, vol. 141(C), pages 1084-1096.
    9. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    10. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2020. "On the effects of leakages in Sliding Rotary Vane Expanders," Energy, Elsevier, vol. 192(C).
    11. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    12. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    13. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    14. Francisco Amaral & Alex Santos & Ewerton Calixto & Fernando Pessoa & Delano Santana, 2020. "Exergetic Evaluation of an Ethylene Refrigeration Cycle," Energies, MDPI, vol. 13(14), pages 1-21, July.
    15. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    16. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2022. "CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders," Energy, Elsevier, vol. 244(PA).
    17. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    18. Piero Danieli & Gianluca Carraro & Andrea Lazzaretto, 2020. "Thermodynamic and Economic Feasibility of Energy Recovery from Pressure Reduction Stations in Natural Gas Distribution Networks," Energies, MDPI, vol. 13(17), pages 1-19, August.
    19. Romero Gómez, J. & Ferreiro Garcia, R. & De Miguel Catoira, A. & Romero Gómez, M., 2013. "Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 74-82.
    20. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s030626192301509x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.