IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs030626192301499x.html
   My bibliography  Save this article

Feature extraction and fault diagnosis of photovoltaic array based on current–voltage conversion

Author

Listed:
  • Ding, Kun
  • Chen, Xiang
  • Jiang, Meng
  • Yang, Hang
  • Chen, Xihui
  • Zhang, Jingwei
  • Gao, Ruiguang
  • Cui, Liu

Abstract

Fault diagnosis plays a crucial role in the operation and maintenance (O&M) of photovoltaic (PV) arrays, and reasonable feature extraction is a prerequisite for effective fault diagnosis. In this paper, a feature extraction and fault diagnosis method based on current–voltage (I–V) conversion is proposed. First, the PV array modeling method based on the double diode model (DDM) and the reverse bias model (RBM) is proposed. This modeling method can simulate the I–V curves under different states and provide data foundation for feature extraction and fault diagnosis. Next, three procedures for correcting I–V curves and three feature enhancement methods are compared to select the optimal program for I–V conversion. The converted feature matrix is dimensionalized using T-distributed stochastic neighbor embedding (T-SNE) to achieve feature extraction. Finally, ten classification models for fault diagnosis are adopted to verify the effectiveness of the proposed feature extraction method. Experimental results demonstrate that the proposed methods perform well on simulation data and provide satisfactory fault diagnosis results for the measured I–V curves. Among the classification models tested, the variable prediction model (VPM) shows the optimal comprehensive performance, with the computational time of 0.17 s and the accuracy of 99.4%.

Suggested Citation

  • Ding, Kun & Chen, Xiang & Jiang, Meng & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Gao, Ruiguang & Cui, Liu, 2024. "Feature extraction and fault diagnosis of photovoltaic array based on current–voltage conversion," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s030626192301499x
    DOI: 10.1016/j.apenergy.2023.122135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301499X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    2. Abenante, Luigi & De Lia, Francesco & Schioppo, Riccardo & Castello, Salvatore, 2020. "Non-linear continuous analytical model for performance degradation of photovoltaic module arrays as a function of exposure time," Applied Energy, Elsevier, vol. 275(C).
    3. Zhang, Yunpeng & Hao, Peng & Lu, Hao & Ma, Jiao & Yang, Ming, 2022. "Modelling and estimating performance for PV module under varying operating conditions independent of reference condition," Applied Energy, Elsevier, vol. 310(C).
    4. Yu, Kunjie & Qu, Boyang & Yue, Caitong & Ge, Shilei & Chen, Xu & Liang, Jing, 2019. "A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module," Applied Energy, Elsevier, vol. 237(C), pages 241-257.
    5. Fengxin Cui & Yanzhao Tu & Wei Gao, 2022. "A Photovoltaic System Fault Identification Method Based on Improved Deep Residual Shrinkage Networks," Energies, MDPI, vol. 15(11), pages 1-20, May.
    6. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    7. Varaha Satya Bharath Kurukuru & Frede Blaabjerg & Mohammed Ali Khan & Ahteshamul Haque, 2020. "A Novel Fault Classification Approach for Photovoltaic Systems," Energies, MDPI, vol. 13(2), pages 1-17, January.
    8. Wang, Haizheng & Zhao, Jian & Sun, Qian & Zhu, Honglu, 2019. "Probability modeling for PV array output interval and its application in fault diagnosis," Energy, Elsevier, vol. 189(C).
    9. del Campo-Ávila, J. & Piliougine, M. & Morales-Bueno, R. & Mora-López, L., 2019. "A data mining system for predicting solar global spectral irradiance. Performance assessment in the spectral response ranges of thin-film photovoltaic modules," Renewable Energy, Elsevier, vol. 133(C), pages 828-839.
    10. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Sun, Tianyi & Liu, Peng, 2021. "A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system," Energy, Elsevier, vol. 234(C).
    11. Tsanakas, John A. & Ha, Long & Buerhop, Claudia, 2016. "Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 695-709.
    12. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    13. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    14. Chen, Zhicong & Wu, Lijun & Cheng, Shuying & Lin, Peijie & Wu, Yue & Lin, Wencheng, 2017. "Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics," Applied Energy, Elsevier, vol. 204(C), pages 912-931.
    15. Zhong, Qing & Nelson, Jake R. & Tong, Daoqin & Grubesic, Tony H., 2022. "A spatial optimization approach to increase the accuracy of rooftop solar energy assessments," Applied Energy, Elsevier, vol. 316(C).
    16. Ayang, Albert & Wamkeue, René & Ouhrouche, Mohand & Djongyang, Noël & Essiane Salomé, Ndjakomo & Pombe, Joseph Kessel & Ekemb, Gabriel, 2019. "Maximum likelihood parameters estimation of single-diode model of photovoltaic generator," Renewable Energy, Elsevier, vol. 130(C), pages 111-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    2. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    3. Nawal Rai & Amel Abbadi & Fethia Hamidia & Nadia Douifi & Bdereddin Abdul Samad & Khalid Yahya, 2023. "Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module," Mathematics, MDPI, vol. 11(8), pages 1-30, April.
    4. Hassan Shaban & Essam H. Houssein & Marco Pérez-Cisneros & Diego Oliva & Amir Y. Hassan & Alaa A. K. Ismaeel & Diaa Salama AbdElminaam & Sanchari Deb & Mokhtar Said, 2021. "Identification of Parameters in Photovoltaic Models through a Runge Kutta Optimizer," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    5. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    6. Edwidge Raissa Mache Kengne & Alain Soup Tewa Kammogne & Thomas Tatietse Tamo & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Photovoltaic Systems Based on Average Current Mode Control: Dynamical Analysis and Chaos Suppression by Using a Non-Adaptive Feedback Outer Loop Controller," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    7. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    8. Manish Kumar Singla & Jyoti Gupta & Parag Nijhawan & Parminder Singh & Nimay Chandra Giri & Essam Hendawi & Mohamed I. Abu El-Sebah, 2023. "Parameter Estimation Techniques for Photovoltaic System Modeling," Energies, MDPI, vol. 16(17), pages 1-16, August.
    9. Livera, Andreas & Theristis, Marios & Makrides, George & Georghiou, George E., 2019. "Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 133(C), pages 126-143.
    10. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    11. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    12. Ding, Kun & Chen, Xiang & Weng, Shuai & Liu, Yongjie & Zhang, Jingwei & Li, Yuanliang & Yang, Zenan, 2023. "Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance," Energy, Elsevier, vol. 262(PB).
    13. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Jingwei Zhang & Zenan Yang & Kun Ding & Li Feng & Frank Hamelmann & Xihui Chen & Yongjie Liu & Ling Chen, 2022. "Modeling of Photovoltaic Array Based on Multi-Agent Deep Reinforcement Learning Using Residuals of I–V Characteristics," Energies, MDPI, vol. 15(18), pages 1-17, September.
    16. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    17. Ridha, Hussein Mohammed & Hizam, Hashim & Gomes, Chandima & Heidari, Ali Asghar & Chen, Huiling & Ahmadipour, Masoud & Muhsen, Dhiaa Halboot & Alghrairi, Mokhalad, 2021. "Parameters extraction of three diode photovoltaic models using boosted LSHADE algorithm and Newton Raphson method," Energy, Elsevier, vol. 224(C).
    18. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    19. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    20. Habib Satria & Rahmad B. Y. Syah & Moncef L. Nehdi & Monjee K. Almustafa & Abdelrahman Omer Idris Adam, 2023. "Parameters Identification of Solar PV Using Hybrid Chaotic Northern Goshawk and Pattern Search," Sustainability, MDPI, vol. 15(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s030626192301499x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.