IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics030626192300199x.html
   My bibliography  Save this article

Energy-sharing operation strategy of multi-district integrated energy systems considering carbon and renewable energy certificate trading

Author

Listed:
  • Tan, Jinjing
  • Pan, Weiqi
  • Li, Yang
  • Hu, Haoming
  • Zhang, Can

Abstract

District integrated energy systems (IESs) have proceeded to the practice stage. A day-ahead (DA) coordinated operation strategy of multi-district IESs is proposed when the entities participate in the energy market (EM), the spinning reserve market (SRM), the natural gas market, the carbon market, and the renewable energy certificate (REC) market simultaneously. We adopt the scenario-based stochastic programming method and the two-settlement mechanism to measure the uncertainties brought by electricity prices, photovoltaic (PV) outputs, and loads. Considering the topologies of electricity, heating, and cooling networks, the energy-sharing mechanism and the integrated demand response (IDR) mechanism are both implemented. We study the overlapped benefits of renewable energy generation (REG) from carbon and REC markets and propose a concept of the green index (GI). Case studies demonstrate that the proposed strategy model and the evaluation indicator can not only contribute to the economical and eco-friendly operation of the multi-district league (MDL), but also stimulate the coupling and complementarity of multiple energies.

Suggested Citation

  • Tan, Jinjing & Pan, Weiqi & Li, Yang & Hu, Haoming & Zhang, Can, 2023. "Energy-sharing operation strategy of multi-district integrated energy systems considering carbon and renewable energy certificate trading," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s030626192300199x
    DOI: 10.1016/j.apenergy.2023.120835
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192300199X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Dafeng & Yang, Bo & Liu, Qi & Ma, Kai & Zhu, Shanying & Ma, Chengbin & Guan, Xinping, 2020. "Energy trading in microgrids for synergies among electricity, hydrogen and heat networks," Applied Energy, Elsevier, vol. 272(C).
    2. Siqin, Zhuoya & Niu, DongXiao & Li, MingYu & Gao, Tian & Lu, Yifan & Xu, Xiaomin, 2022. "Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation," Applied Energy, Elsevier, vol. 321(C).
    3. Yang, Hongming & Xiong, Tonglin & Qiu, Jing & Qiu, Duo & Dong, Zhao Yang, 2016. "Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response," Applied Energy, Elsevier, vol. 167(C), pages 353-365.
    4. Wei, F. & Jing, Z.X. & Wu, Peter Z. & Wu, Q.H., 2017. "A Stackelberg game approach for multiple energies trading in integrated energy systems," Applied Energy, Elsevier, vol. 200(C), pages 315-329.
    5. Cong, Di & Liang, Lingling & Jing, Shaoxing & Han, Yongming & Geng, Zhiqiang & Chu, Chong, 2021. "Energy supply efficiency evaluation of integrated energy systems using novel SBM-DEA integrating Monte Carlo," Energy, Elsevier, vol. 231(C).
    6. Saloux, Etienne & Candanedo, José A., 2021. "Model-based predictive control to minimize primary energy use in a solar district heating system with seasonal thermal energy storage," Applied Energy, Elsevier, vol. 291(C).
    7. Liu, Zhiqiang & Cui, Yanping & Wang, Jiaqiang & Yue, Chang & Agbodjan, Yawovi Souley & Yang, Yu, 2022. "Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties," Energy, Elsevier, vol. 254(PC).
    8. Lovcha, Yuliya & Perez-Laborda, Alejandro & Sikora, Iryna, 2022. "The determinants of CO2 prices in the EU emission trading system," Applied Energy, Elsevier, vol. 305(C).
    9. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
    10. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
    11. Anwar, Muhammad Bashar & Stephen, Gord & Dalvi, Sourabh & Frew, Bethany & Ericson, Sean & Brown, Maxwell & O’Malley, Mark, 2022. "Modeling investment decisions from heterogeneous firms under imperfect information and risk in wholesale electricity markets," Applied Energy, Elsevier, vol. 306(PA).
    12. Zhang, Qi & Wang, Ge & Li, Yan & Li, Hailong & McLellan, Benjamin & Chen, Siyuan, 2018. "Substitution effect of renewable portfolio standards and renewable energy certificate trading for feed-in tariff," Applied Energy, Elsevier, vol. 227(C), pages 426-435.
    13. Zhu, Dafeng & Yang, Bo & Ma, Chengbin & Wang, Zhaojian & Zhu, Shanying & Ma, Kai & Guan, Xinping, 2022. "Stochastic gradient-based fast distributed multi-energy management for an industrial park with temporally-coupled constraints," Applied Energy, Elsevier, vol. 317(C).
    14. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    15. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    16. Tian, Xingtao & Lin, Xiaojie & Zhong, Wei & Zhou, Yi, 2022. "Security assessment of electricity-gas-heat integrated energy systems based on the vulnerability index," Energy, Elsevier, vol. 249(C).
    17. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
    18. Li, Chengzhou & Wang, Ningling & Wang, Zhuo & Dou, Xiaoxiao & Zhang, Yumeng & Yang, Zhiping & Maréchal, François & Wang, Ligang & Yang, Yongping, 2022. "Energy hub-based optimal planning framework for user-level integrated energy systems: Considering synergistic effects under multiple uncertainties," Applied Energy, Elsevier, vol. 307(C).
    19. Kobashi, Takuro & Choi, Younghun & Hirano, Yujiro & Yamagata, Yoshiki & Say, Kelvin, 2022. "Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts," Applied Energy, Elsevier, vol. 306(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng, Minmin & Lv, Kunfeng & Han, Chuanfeng & Liu, Pihui, 2023. "Trading behavior strategy of power plants and the grid under renewable portfolio standards in China: A tripartite evolutionary game analysis," Energy, Elsevier, vol. 284(C).
    2. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Assessing the policy synergy among power, carbon emissions trading and tradable green certificate market mechanisms on strategic GENCOs in China," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    2. Zhang, Chaoyi & Jiao, Zaibin & Liu, Junshan & Ning, Keer, 2023. "Robust planning and economic analysis of park-level integrated energy system considering photovoltaic/thermal equipment," Applied Energy, Elsevier, vol. 348(C).
    3. Ma, Tengfei & Pei, Wei & Xiao, Hao & Kong, Li & Mu, Yunfei & Pu, Tianjiao, 2020. "The energy management strategies based on dynamic energy pricing for community integrated energy system considering the interactions between suppliers and users," Energy, Elsevier, vol. 211(C).
    4. Mingshan Mo & Xinrui Xiong & Yunlong Wu & Zuyao Yu, 2023. "Deep-Reinforcement-Learning-Based Low-Carbon Economic Dispatch for Community-Integrated Energy System under Multiple Uncertainties," Energies, MDPI, vol. 16(22), pages 1-18, November.
    5. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    6. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
    7. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    8. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    9. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    10. Wang, Jiangjiang & Huo, Shuojie & Yan, Rujing & Cui, Zhiheng, 2022. "Leveraging heat accumulation of district heating network to improve performances of integrated energy system under source-load uncertainties," Energy, Elsevier, vol. 252(C).
    11. Yang, Jie & Ma, Tieding & Ma, Kai & Yang, Bo & Guerrero, Josep M. & Liu, Zhixin, 2021. "Trading mechanism and pricing strategy of integrated energy systems based on credit rating and Bayesian game," Energy, Elsevier, vol. 232(C).
    12. Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Lv, Hang, 2023. "Optimal planning of an economic and resilient district integrated energy system considering renewable energy uncertainty and demand response under natural disasters," Energy, Elsevier, vol. 277(C).
    13. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    14. Ouyang, Tiancheng & Zhang, Mingliang & Wu, Wencong & Zhao, Jiaqi & Xu, Hua, 2023. "A day-ahead planning for multi-energy system in building community," Energy, Elsevier, vol. 267(C).
    15. Qiao, Yiyang & Hu, Fan & Xiong, Wen & Guo, Zihao & Zhou, Xiaoguang & Li, Yajun, 2023. "Multi-objective optimization of integrated energy system considering installation configuration," Energy, Elsevier, vol. 263(PC).
    16. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    17. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    19. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    20. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s030626192300199x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.