IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v332y2023ics0306261922017718.html
   My bibliography  Save this article

Detection of inhomogeneities in serially connected lithium-ion batteries

Author

Listed:
  • Rüther, Tom
  • Plank, Christian
  • Schamel, Maximilian
  • Danzer, Michael A.

Abstract

Serially connected batteries present a cell-to-cell variation in their electrochemical behavior that tends to increase over the lifetime. The decision for the best circular economy option for aged or defective battery packs – i.e., repair, remanufacturing, or recycling – requires comprehensive testing, analysis, and an according data basis. Remanufacturing of battery packs refers to the replacement of individual (sub-)modules or cells which are defective or show a diverging aging behavior to the rest of the battery units. A detection algorithm is required to decide if a significant inhomogeneity in a serial connection of batteries is present. For this reason, virtual battery packs are built based on the measurement of 12 individual batteries of the same type. Cell-to-cell variations are determined at the begin of life and a novel representation for the quantitative and qualitative analysis is given. This work extracts impedance-based features of different serial battery pack configurations through a novel comparative analysis approach. The features are extracted from Bode and Nyquist plots and the real and imaginary parts of the impedance itself. The detectability is analyzed depending on the number of cells and the underlying effects are discussed. A detailed sensitivity analysis is carried out for the most promising features, in which the influence of the cell-to-cell variations, the aging condition, and the aging mechanism are analyzed. The feature that shows the highest sensitivity, the so called low-frequency minimum, is able to detect single outliers within a high number of serially connected cells.

Suggested Citation

  • Rüther, Tom & Plank, Christian & Schamel, Maximilian & Danzer, Michael A., 2023. "Detection of inhomogeneities in serially connected lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
  • Handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017718
    DOI: 10.1016/j.apenergy.2022.120514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922017718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Lin & Dababneh, Fadwa & Zhao, Jing, 2018. "Cost-effective supply chain for electric vehicle battery remanufacturing," Applied Energy, Elsevier, vol. 226(C), pages 277-286.
    2. Song, Ziyou & Yang, Niankai & Lin, Xinfan & Pinto Delgado, Fanny & Hofmann, Heath & Sun, Jing, 2022. "Progression of cell-to-cell variation within battery modules under different cooling structures," Applied Energy, Elsevier, vol. 312(C).
    3. Wang, Lei & Wang, Xiang & Yang, Wenxian, 2020. "Optimal design of electric vehicle battery recycling network – From the perspective of electric vehicle manufacturers," Applied Energy, Elsevier, vol. 275(C).
    4. Yu Miao & Patrick Hynan & Annette von Jouanne & Alexandre Yokochi, 2019. "Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements," Energies, MDPI, vol. 12(6), pages 1-20, March.
    5. Tomasz Rokicki & Piotr Bórawski & Aneta Bełdycka-Bórawska & Agata Żak & Grzegorz Koszela, 2021. "Development of Electromobility in European Union Countries under COVID-19 Conditions," Energies, MDPI, vol. 15(1), pages 1-24, December.
    6. Liu, Xinhua & Ai, Weilong & Naylor Marlow, Max & Patel, Yatish & Wu, Billy, 2019. "The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs," Applied Energy, Elsevier, vol. 248(C), pages 489-499.
    7. Xinwei Cong & Caiping Zhang & Jiuchun Jiang & Weige Zhang & Yan Jiang & Linjing Zhang, 2021. "A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 14(5), pages 1-21, February.
    8. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    9. David Beck & Philipp Dechent & Mark Junker & Dirk Uwe Sauer & Matthieu Dubarry, 2021. "Inhomogeneities and Cell-to-Cell Variations in Lithium-Ion Batteries, a Review," Energies, MDPI, vol. 14(11), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lander, Laura & Tagnon, Chris & Nguyen-Tien, Viet & Kendrick, Emma & Elliott, Robert J.R. & Abbott, Andrew P. & Edge, Jacqueline S. & Offer, Gregory J., 2023. "Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs," Applied Energy, Elsevier, vol. 331(C).
    2. Hao Hao & Wenxian Xu & Fangfang Wei & Chuanliang Wu & Zhaoran Xu, 2022. "Reward–Penalty vs. Deposit–Refund: Government Incentive Mechanisms for EV Battery Recycling," Energies, MDPI, vol. 15(19), pages 1-18, September.
    3. Shuang Yao & Leke Wu & Donghua Yu, 2023. "Synergy between Electric Vehicle Manufacturers and Battery Recyclers through Technology and Innovation: A Game Theory Approach," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    4. Peng Xing & Junzhu Yao, 2022. "Power Battery Echelon Utilization and Recycling Strategy for New Energy Vehicles Based on Blockchain Technology," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    5. Giovanna Gonzales-Calienes & Ben Yu & Farid Bensebaa, 2022. "Development of a Reverse Logistics Modeling for End-of-Life Lithium-Ion Batteries and Its Impact on Recycling Viability—A Case Study to Support End-of-Life Electric Vehicle Battery Strategy in Canada," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    6. Vongdala Noudeng & Nguyen Van Quan & Tran Dang Xuan, 2022. "A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    7. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    8. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    9. Anisa Surya Wijareni & Hendri Widiyandari & Agus Purwanto & Aditya Farhan Arif & Mohammad Zaki Mubarok, 2022. "Morphology and Particle Size of a Synthesized NMC 811 Cathode Precursor with Mixed Hydroxide Precipitate and Nickel Sulfate as Nickel Sources and Comparison of Their Electrochemical Performances in an," Energies, MDPI, vol. 15(16), pages 1-15, August.
    10. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    11. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    12. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    13. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    14. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    15. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Jin Li & Feng Wang & Yu He, 2020. "Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    17. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    18. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    19. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    20. Liu, Huaqiang & Ahmad, Shakeel & Shi, Yu & Zhao, Jiyun, 2021. "A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.