IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v314y2022ics0306261922004032.html
   My bibliography  Save this article

Synergistic effects between solid potato waste and waste activated sludge for waste-to-power conversion in microbial fuel cells

Author

Listed:
  • Du, Haixia
  • Shao, Zongping

Abstract

Environmental pollution and energy shortage are two important concerns that may seriously impair the sustainable development of our society. Microbial fuel cells (MFCs) are attractive technology for the direct conversion of chemical energy of organic wastes into electric power to realize simultaneous electrical power recovery and environmental remediation. In comparison to organic wastewater, solid organic waste is more difficult to be degraded. Food waste as one of the important organic wastes has significant impact on our ecosystem. Here, by taking solid potato waste (SPW) as a typical solid food waste, the impact of waste activated sludge (WAS) as a second waste to introduce synergistic effects between them to enhance waste-to-power conversion in microbial fuel cell (MFC) was systematically investigated. For the MFCs with seven different mixing ratios of SPW and WAS, the MFC with mixing ratio of 6:1 produced the highest maximum current density and maximum power density of 320.1 mA/m2 and 14.1 mW/m2. Mixing larger ratios of WAS (2:1 and 4:1) resulted in only a very slight increase in coulombic efficiency; while mixing smaller ratios of WAS (6:1, 8:1 and 10:1) significantly increased the coulombic efficiency, and the coulombic efficiency showed an obvious increase as the WAS mixing ratio decreased. Less humic acid- and fulvic acid-like substances were formed from the hydrolysis and degradation of SPW and WAS, and most of dissolved macromolecular organic matters were hydrolyzed into organic fractions with small molecular weight. Principal component analysis indicated that the composition of dissolved organic matters was significantly influenced by different mixing ratios of SPW and WAS throughout the operation. The study provides a promising strategy for enhancing energy recovery from SPW in MFCs.

Suggested Citation

  • Du, Haixia & Shao, Zongping, 2022. "Synergistic effects between solid potato waste and waste activated sludge for waste-to-power conversion in microbial fuel cells," Applied Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922004032
    DOI: 10.1016/j.apenergy.2022.118994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922004032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Sungyup & Jung, Jong-Min & Tsang, Yiu Fai & Bhatnagar, Amit & Chen, Wei-Hsin & Lin, Kun-Yi Andrew & Kwon, Eilhann E., 2022. "Biodiesel production from black soldier fly larvae derived from food waste by non-catalytic transesterification," Energy, Elsevier, vol. 238(PA).
    2. Fu, Qizi & Wang, Dongbo & Li, Xiaoming & Yang, Qi & Xu, Qiuxiang & Ni, Bing-Jie & Wang, Qilin & Liu, Xuran, 2021. "Towards hydrogen production from waste activated sludge: Principles, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Abudi, Zaidun Naji & Hu, Zhiquan & Sun, Na & Xiao, Bo & Rajaa, Nagham & Liu, Cuixia & Guo, Dabin, 2016. "Batch anaerobic co-digestion of OFMSW (organic fraction of municipal solid waste), TWAS (thickened waste activated sludge) and RS (rice straw): Influence of TWAS and RS pretreatment and mixing ratio," Energy, Elsevier, vol. 107(C), pages 131-140.
    4. Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.
    5. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    7. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2023. "Application of Microbial Fuel Cell Technology in Potato Processing Industry," Energies, MDPI, vol. 16(18), pages 1-11, September.
    2. Rickelmi Agüero-Quiñones & Zairi Ávila-Sánchez & Segundo Rojas-Flores & Luis Cabanillas-Chirinos & Magaly De La Cruz-Noriega & Renny Nazario-Naveda & Walter Rojas-Villacorta, 2023. "Activated Carbon Electrodes for Bioenergy Production in Microbial Fuel Cells Using Synthetic Wastewater as Substrate," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    3. Segundo Rojas-Flores & Magaly De La Cruz-Noriega & Luis Cabanillas-Chirinos & Santiago M. Benites & Renny Nazario-Naveda & Daniel Delfín-Narciso & Moisés Gallozzo-Cardenas & Félix Diaz & Emzon Murga-T, 2023. "Green Energy Generated in Single-Chamber Microbial Fuel Cells Using Tomato Waste," Sustainability, MDPI, vol. 15(13), pages 1-12, July.
    4. Chen, Shuxian & Dai, Xiaohu & Yang, Donghai & Dai, Lingling & Hua, Yu, 2023. "Enhancing PHA production through metal-organic frameworks: Mechanisms involving superproton transport and bacterial metabolic pathways," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel García & Paula Oulego & Mario Díaz & Sergio Collado, 2021. "Non-Energetic Chemical Products by Fermentation of Hydrolyzed Sewage Sludge," Sustainability, MDPI, vol. 13(10), pages 1-37, May.
    2. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński & Sławomir Kasiński & Jordi Cruz Sanchez, 2024. "Biotechnological Valorization of Waste Glycerol into Gaseous Biofuels—A Review," Energies, MDPI, vol. 17(2), pages 1-33, January.
    3. Amro Hassanein & Freddy Witarsa & Stephanie Lansing & Ling Qiu & Yong Liang, 2020. "Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    4. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    5. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).
    7. Ruan, Jujun & Huang, Zhe & Huang, Jiaxin & Yuan, Zhihui & Huang, Mingzhi & Du, Changming & Zhang, Tao & Qiu, Rongliang, 2018. "A novel pneumatic separator for separating diode and CD capacitance of waste printed circuit boards," Energy, Elsevier, vol. 142(C), pages 191-195.
    8. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    10. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    11. Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Panagiotis Xypolias & Stergios Vakalis & Ioannis Daskaloudis & Dimitrios Francis Lekkas, 2023. "Hydrothermal Carbonization of Dry Anaerobic Digestion Residues Derived from Food and Agro Wastes in Lesvos Island," Energies, MDPI, vol. 16(12), pages 1-14, June.
    13. Omid Norouzi & Animesh Dutta, 2022. "The Current Status and Future Potential of Biogas Production from Canada’s Organic Fraction Municipal Solid Waste," Energies, MDPI, vol. 15(2), pages 1-17, January.
    14. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    15. Roozbeh Feiz & Jonas Ammenberg & Annika Björn & Yufang Guo & Magnus Karlsson & Yonghui Liu & Yuxian Liu & Laura Shizue Moriga Masuda & Alex Enrich-Prast & Harald Rohracher & Kristina Trygg & Sepehr Sh, 2019. "Biogas Potential for Improved Sustainability in Guangzhou, China—A Study Focusing on Food Waste on Xiaoguwei Island," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    16. De Clercq, Djavan & Wen, Zongguo & Caicedo, Luis & Cao, Xin & Fan, Fei & Xu, Ruifei, 2017. "Application of DEA and statistical inference to model the determinants of biomethane production efficiency: A case study in south China," Applied Energy, Elsevier, vol. 205(C), pages 1231-1243.
    17. Zang, Xiaoya & Wang, Jing & He, Yong & Zhou, Xuebing & Liang, Deqing, 2022. "Experimental investigation of hydrate formation kinetics and microscopic properties by a synthesized ternary gas mixture with combination additives," Energy, Elsevier, vol. 259(C).
    18. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    19. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    20. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922004032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.