IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics0306261921008254.html
   My bibliography  Save this article

An optimal stochastic energy management system for resilient microgrids

Author

Listed:
  • Silva, Jéssica Alice A.
  • López, Juan Camilo
  • Arias, Nataly Bañol
  • Rider, Marcos J.
  • da Silva, Luiz C.P.

Abstract

This paper presents a stochastic mixed-integer nonlinear programming model for the optimal energy management system of unbalanced three-phase of alternating current microgrids. The proposed model considers the following random variables: nodal demands, nodal renewable generation and voltage reference at the point of common coupling. Furthermore, the proposed model is aimed at providing resilient energy management system solutions via contingency constraints. The proposed mixed-integer nonlinear programming model is transformed into a mixed-integer linear programming model through a set of linearizations that can be solved via off-the-shelf convex programming solvers. The analyzed microgrid comprises photovoltaic generation, energy storage systems, electric vehicle chargers, direct load control, and non-renewable generation, which operates when the microgrid is in islanded mode. The stochastic nature of the problem is considered through a scenario-based approach. The solution to the model determines the day-ahead operation of the microgrid resources that minimizes the average operational cost. An unexpected islanded operation at any given time is considered via contingency constraints. Tests are performed using data of the real microgrid at the Laboratory of Intelligent Electrical Networks (LabREI), at University of Campinas. Results show that the proposed model produces resilient day-ahead energy management system solutions while minimizing the average operational costs and maximizing the use of local renewable energy sources.

Suggested Citation

  • Silva, Jéssica Alice A. & López, Juan Camilo & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2021. "An optimal stochastic energy management system for resilient microgrids," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008254
    DOI: 10.1016/j.apenergy.2021.117435
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    2. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    3. Nikzad, Mehdi & Samimi, Abouzar, 2021. "Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems," Applied Energy, Elsevier, vol. 282(PA).
    4. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    5. Kong, Xiangyu & Liu, Dehong & Wang, Chengshan & Sun, Fangyuan & Li, Shupeng, 2020. "Optimal operation strategy for interconnected microgrids in market environment considering uncertainty," Applied Energy, Elsevier, vol. 275(C).
    6. Jafari, Amirreza & Ganjeh Ganjehlou, Hamed & Khalili, Tohid & Bidram, Ali, 2020. "A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids," Applied Energy, Elsevier, vol. 270(C).
    7. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F., 2021. "A novel microgrid support management system based on stochastic mixed-integer linear programming," Energy, Elsevier, vol. 223(C).
    8. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umar, Abdullah & Kumar, Deepak & Ghose, Tirthadip, 2022. "Blockchain-based decentralized energy intra-trading with battery storage flexibility in a community microgrid system," Applied Energy, Elsevier, vol. 322(C).
    2. Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
    3. José F. C. Castro & Ronaldo A. Roncolatto & Antonio R. Donadon & Vittoria E. M. S. Andrade & Pedro Rosas & Rafael G. Bento & José G. Matos & Fernando A. Assis & Francisco C. R. Coelho & Rodolfo Quadro, 2023. "Microgrid Applications and Technical Challenges—The Brazilian Status of Connection Standards and Operational Procedures," Energies, MDPI, vol. 16(6), pages 1-25, March.
    4. Lee, J. & Razeghi, G. & Samuelsen, S., 2022. "Generic microgrid controller with self-healing capabilities," Applied Energy, Elsevier, vol. 308(C).
    5. Hwang Goh, Hui & Shi, Shuaiwei & Liang, Xue & Zhang, Dongdong & Dai, Wei & Liu, Hui & Yuong Wong, Shen & Agustiono Kurniawan, Tonni & Chen Goh, Kai & Leei Cham, Chin, 2022. "Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty," Applied Energy, Elsevier, vol. 327(C).
    6. Chapaloglou, Spyridon & Varagnolo, Damiano & Marra, Francesco & Tedeschi, Elisabetta, 2022. "Data-driven energy management of isolated power systems under rapidly varying operating conditions," Applied Energy, Elsevier, vol. 314(C).
    7. Firouzi, Mehdi & Setayesh Nazar, Mehrdad & Shafie-khah, Miadreza & Catalão, João P.S., 2023. "Integrated framework for modeling the interactions of plug-in hybrid electric vehicles aggregators, parking lots and distributed generation facilities in electricity markets," Applied Energy, Elsevier, vol. 334(C).
    8. Shahbazbegian, Vahid & Shafie-khah, Miadreza & Laaksonen, Hannu & Strbac, Goran & Ameli, Hossein, 2023. "Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems," Applied Energy, Elsevier, vol. 348(C).
    9. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    10. Chang, Weiguang & Dong, Wei & Yang, Qiang, 2023. "Day-ahead bidding strategy of cloud energy storage serving multiple heterogeneous microgrids in the electricity market," Applied Energy, Elsevier, vol. 336(C).
    11. Silva, Jéssica Alice A. & López, Juan Camilo & Guzman, Cindy Paola & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2023. "An IoT-based energy management system for AC microgrids with grid and security constraints," Applied Energy, Elsevier, vol. 337(C).
    12. Qiu, Haifeng & Sun, Qirun & Lu, Xi & Beng Gooi, Hoay & Zhang, Suhan, 2022. "Optimality-feasibility-aware multistage unit commitment considering nonanticipative realization of uncertainty," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Chu & Ali, Syed Qaseem & Joos, Geza & Paquin, Jean-Nicolas & Montenegro, Juan Felipe Patarroyo, 2023. "Design and CHIL testing of microgrid controller with general rule-based dispatch," Applied Energy, Elsevier, vol. 345(C).
    2. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.
    3. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    4. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    6. Silva, Jéssica Alice A. & López, Juan Camilo & Guzman, Cindy Paola & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2023. "An IoT-based energy management system for AC microgrids with grid and security constraints," Applied Energy, Elsevier, vol. 337(C).
    7. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    8. Leonori, Stefano & Martino, Alessio & Frattale Mascioli, Fabio Massimo & Rizzi, Antonello, 2020. "Microgrid Energy Management Systems Design by Computational Intelligence Techniques," Applied Energy, Elsevier, vol. 277(C).
    9. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    12. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    13. Makbul A.M. Ramli & H.R.E.H. Bouchekara & Abdulsalam S. Alghamdi, 2019. "Efficient Energy Management in a Microgrid with Intermittent Renewable Energy and Storage Sources," Sustainability, MDPI, vol. 11(14), pages 1-28, July.
    14. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    15. Harsh, Pratik & Das, Debapriya, 2022. "Optimal coordination strategy of demand response and electric vehicle aggregators for the energy management of reconfigured grid-connected microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Iria, José & Scott, Paul & Attarha, Ahmad & Gordon, Dan & Franklin, Evan, 2022. "MV-LV network-secure bidding optimisation of an aggregator of prosumers in real-time energy and reserve markets," Energy, Elsevier, vol. 242(C).
    17. Maen Z. Kreishan & Ahmed F. Zobaa, 2021. "Optimal Allocation and Operation of Droop-Controlled Islanded Microgrids: A Review," Energies, MDPI, vol. 14(15), pages 1-45, July.
    18. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    19. L. Alvarado-Barrios & A. Rodríguez del Nozal & A. Tapia & J. L. Martínez-Ramos & D. G. Reina, 2019. "An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes," Energies, MDPI, vol. 12(11), pages 1-23, June.
    20. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.