IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v299y2021ics0306261921007066.html
   My bibliography  Save this article

Improvement of thermal comfort by hydraulic-driven ventilation device and space partition arrangement towards building energy saving

Author

Listed:
  • Chi, Fang'ai
  • Pan, Jiajie
  • Liu, Yang
  • Guo, Yuang

Abstract

Horizontal space bears a great potential of rainwater, especially for the cities with an intense density of residential building in the middle and lower reaches of the Yangtze River (China). The rainwater collected on the roof has huge potential energy due to thealtitude differencefrom the ground, which belongs to the clean and renewable energy. Previous studies on the indoor passive ventilation strategies generally depend on the solar energy and the wind energy, resulting in failing to apply the potential energy of rainwater. Here, we proposed a novel hydraulic-driven ventilation device. This proposed device is regarded as a renewable energy supplier, since it can realize the indoor air movement by utilizing the potential energy of rainwater collected on the roof. Based on the experimental testing, we found that the hydraulic-driven ventilation device has a good capability, in terms of driving air movement. Furthermore, the numerical testing was carried out, to evaluate the indoor ventilation performances in two testing rooms of the study building integrated with the proposed ventilation system. The thermal comfort demander was taken into account, to optimize the building space partition arrangement. According to the building energy assessment tool, the integration of the hydraulic-driven ventilation device (i.e., renewable energy supplier) and the building space partition arrangement (i.e., thermal comfort demander), contributes to improving the building energy saving potentials by 46% and 43% for the periods of plum rain season and summer, respectively.

Suggested Citation

  • Chi, Fang'ai & Pan, Jiajie & Liu, Yang & Guo, Yuang, 2021. "Improvement of thermal comfort by hydraulic-driven ventilation device and space partition arrangement towards building energy saving," Applied Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007066
    DOI: 10.1016/j.apenergy.2021.117292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921007066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calautit, John Kaiser & O’Connor, Dominic & Tien, Paige Wenbin & Wei, Shuangyu & Pantua, Conrad Allan Jay & Hughes, Ben, 2020. "Development of a natural ventilation windcatcher with passive heat recovery wheel for mild-cold climates: CFD and experimental analysis," Renewable Energy, Elsevier, vol. 160(C), pages 465-482.
    2. Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.
    3. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    5. Daghigh, R., 2015. "Assessing the thermal comfort and ventilation in Malaysia and the surrounding regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 681-691.
    6. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    7. Rashid, Syed Aftab & Haider, Zeeshan & Chapal Hossain, S.M. & Memon, Kashan & Panhwar, Fazil & Mbogba, Momoh Karmah & Hu, Peng & Zhao, Gang, 2019. "Retrofitting low-cost heating ventilation and air-conditioning systems for energy management in buildings," Applied Energy, Elsevier, vol. 236(C), pages 648-661.
    8. Marouen Ghoulem & Khaled El Moueddeb & Ezzedine Nehdi & Fangliang Zhong & John Calautit, 2020. "Design of a Passive Downdraught Evaporative Cooling Windcatcher (PDEC-WC) System for Greenhouses in Hot Climates," Energies, MDPI, vol. 13(11), pages 1-23, June.
    9. Imran, Ahmed Abdulnabi & Jalil, Jalal M. & Ahmed, Sabah T., 2015. "Induced flow for ventilation and cooling by a solar chimney," Renewable Energy, Elsevier, vol. 78(C), pages 236-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rekha Guchhait & Biswajit Sarkar, 2023. "Increasing Growth of Renewable Energy: A State of Art," Energies, MDPI, vol. 16(6), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Qiang, Guofeng & Tang, Shu & Hao, Jianli & Di Sarno, Luigi & Wu, Guangdong & Ren, Shaoxing, 2023. "Building automation systems for energy and comfort management in green buildings: A critical review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    4. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    5. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    6. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort," Renewable Energy, Elsevier, vol. 115(C), pages 183-198.
    7. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    8. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    9. Juan Botero-Valencia & Adrian Martinez-Perez & Ruber Hernández-García & Luis Castano-Londono, 2023. "Exploring Spatial Patterns in Sensor Data for Humidity, Temperature, and RSSI Measurements," Data, MDPI, vol. 8(5), pages 1-13, April.
    10. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    11. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    12. Tong Lei & Zuoqin Qian & Jie Ren, 2023. "Performance Evaluation of LiBr-H 2 O and LiCl-H 2 O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources," Energies, MDPI, vol. 16(16), pages 1-19, August.
    13. Cylon Liaw & Vitória Elisa da Silva & Rebecca Maduro & Milena Megrè & Julio Cesar de Souza Inácio Gonçalves & Edmilson Moutinho dos Santos & Dominique Mouette, 2023. "Thermal Comfort Analysis Using System Dynamics Modeling—A Sustainable Scenario Proposition for Low-Income Housing in Brazil," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    14. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    15. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    16. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2017. "A Design of a Hybrid Non-Linear Control Algorithm," Energies, MDPI, vol. 10(11), pages 1-32, November.
    17. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    18. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    19. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    20. Francesco Lolli & Antonio Maria Coruzzolo & Samuele Marinello & Asia Traini & Rita Gamberini, 2022. "A Bibliographic Analysis of Indoor Air Quality (IAQ) in Industrial Environments," Sustainability, MDPI, vol. 14(16), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.